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Abstract 
This paper presents the applications of Kriging spatial interpolation methods for meteorologic variables, 
including temperature and relative humidity, in regions of Vietnam. Three types of interpolation methods are 
used, which are as follows: Ordinary Kriging, Universal Kriging, and Universal Kriging plus Digital Elevation 
model correction. The input meteorologic data was collected from 98 ground weather stations throughout 
Vietnam and the outputs were interpolated temperature and relative humidity gridded fields, along with their 
error maps. The experimental results showed that Universal Kriging plus the digital elevation model 
correction method outperformed the two other methods when applied to temperature. The interpolation 
effectiveness of Ordinary Kriging and Universal Kriging were almost the same when applied to both 
temperature and relative humidity. 
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1. Introduction 

Temperature and humidity are the two main meteorologic variables that directly impact physical and 
biological processes. Knowledge of the spatial temporal variability of climatic conditions is required for 
assessing the recent climate change and greenhouse effect [1]. Spatially and temporally continuous 
gridded meteorologic datasets are important in many applications, such as in forest fire risk modeling, 
soil sciences, and ecological studies [2,3]. However, the weather station network is often sparse and 
meteorologic data may not be available where it is most needed. Various interpolation methods have 
been developed to generate the grid dataset of interest meteorologic variables. The purpose is to predict 
meteorologic values based on the spatial autocorrelation among observations and possibly ancillary 
variables for locations where no actual observations are available. 

Various statistical methods have been developed for interpolating climate data. Many studies have 
pointed out that Kriging interpolation methods have high accuracy and low bias compared with other geo-

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received November 14, 2014; accepted January 19, 2015. 
Corresponding Author: Le Thanh Ha (ltha@vnu.edu.vn) 

*    University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam (thanhnx_1@vnu.edu.vn, {tungnb, 

phongdk, hungbq, thanhntn}@fimo.edu.vn, ltha@vnu.edu.vn) 

**  Vietnam Forestry University, Hanoi, Vietnam (quynhxm_2005@yahoo.com) 

J Inf Process Syst, Vol.11, No.1, pp.134~147, March 2015 ISSN 1976-913X (Print) 
http://dx.doi.org/10.3745/JIPS.02.0016 ISSN 2092-805X (Electronic) 



Xuan Thanh Nguyen, Ba Tung Nguyen, Khac Phong Do, Quang Hung Bui, Thi Nhat Thanh Nguyen, Van Quynh Vuong, and Thanh Ha Le 
 

 

J Inf Process Syst, Vol.11, No.1, pp.134~147, March 2015 | 135 

statistical methods [4,5]. These methods are a linear combination of weights, which are determined  
by the spatial variation structure [6]. Previously, some papers implemented Kriging methods on their country-
level data. In [7], 922 meteorological stations in the United States were interpolated using Residual Kriging plus 
elevation and 12 directions models. Another paper applied a Kriging method with an external drift (e.g., mean 
elevation, sea, and lake percentage) to station-based temperature and precipitation in Finland [6]. In [8-10], they 
produced monthly, min, max, and average climate gridded datasets from their country-level ground weather 
stations using Kriging methods. In Vietnam, there has been some research carried out on Kriging interpolation 
on frost and low temperature data from stations, MODIS, and NOAA data from the northwest region of the 
country. In [11,12], a 100×100 m2 high-resolution warning map of frost and low temperatures was constructed 
and continuously updated in some provinces. 

This research targets were used to develop interpolation models for generating temperature and 
relative humidity gridded fields from scattered ground station observations. We proposed three models 
including Ordinary Kriging (OrK), Universal Kriging (UnK), UnK plus Digital Elevation Model 
(UnK+DEM). The models were then applied to ten years of 98 ground weather stations data in 
Vietnam, plus satellite images as ancillary data. Then, ten-fold cross-validation was used to compare 
these three models and choose to the best one, which was the UnK+DEM. 
The paper consists of four main sections, which are the introduction, datasets and methodology, 

results, and the conclusion.  
 
 

2. Datasets and Methodology  

2.1 Study Area 
 

The study area for this research was in Vietnam, which is located at approximately 8°N to 23°N and 
110°E to 120°E (See Fig. 1). Vietnam is a tropical country and spans a land area of around 33 million ha, 
of which 13.9 million ha are forests (3.5 million ha of forest plantations and 10.4 million ha of natural 
forests). Vietnam is divided into eight administration regions: Northwest, Northeast, Red River Delta, 
North-Central Coast, South-Central Coast, Central Highlands, Southeast, and the Mekong River Delta. 

 

 
Fig. 1. Weather stations map in Vietnam. 
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2.2 Datasets 
 

There are two types of data that were collected and used in this study. 
Ground station data: all meteorologic data was collected from the Forest Protection Department, 

Vietnam Administration of Forestry from 2004 to 2014. This meteorologic data included temperature 
(GR TEMP) and relative humidity (GR RH) measured at 13:00 every day from 98 stations located 
throughout Vietnam, as seen in Fig. 1. In addition, spatial information, including the location and 
altitude (GRA) of these ground stations, were also included in the data set.  

Satellite Digital Elevation Model (DEM), ASTER, is a medium-to-high spatial resolution, 
multispectral imaging system that flies onboard the TERRA satellite. The imaging system acquires 
stereoscopic images at a spatial resolution of 15 m for deriving DEM. As a result, ASTER DEM is a 30-
m elevation dataset that was created by stereo-correlating automated techniques [13]. In this work, 
ASTER-DEM is used as ancillary data for the removal of the elevation effect of temperature data. 

 
 

2.3 Methodology 
 

2.3.1 Kriging spatial interpolation for meteorologic data 
 

In this section, we present the application of Kriging spatial interpolation methods to temperature 
and humidity. This spatial interpolation is applied to temperature and humidity variables 
independently. For simplicity, meteorologic variable terminology is used to indicate either the 
temperature variable or humidity variable. 

The output of interpolation consists of interpolated meteorologic fields in Vietnam and their error 
maps. Kriging works well in cases when the statistical assumptions are met and in cases where there are 
a sufficient number of non-clustered target observations. As such, the spatial pattern (covariance) can 
be described with statistical significance and with a relatively sufficient level of detail in connection to 
the spatial gradients of variation of the target variable [14]. The meteorologic data, which is comprised 
of years of data from 98 ground stations, is suitable for applying Kriging interpolation. 

All interpolation algorithms estimate the destination value at a given location as a weighted sum of 
data values at surrounding locations. Kriging estimates the spatial variation structure through a 
variogram and takes the spatial autocorrelation into consideration [15]. The Kriging estimator is 
modeled as the sum of a global trend ߤ (measuring broad trends in the data over the entire study 
region) and a local stochastic variation ߳ [16]: 

 

(ݏ)ܼ                                   = (ݏ)ߤ  + (ݏ)߳ (1) 

 
where s denotes the spatial coordinate. Based on the assumptions of the global trend ߤ, many types of 
Kriging methods have been derived. For example, Simple Kriging (SK) assumes = 0 ; Ordinary Kriging 
(OK) assumes the unknown constant mean; and Universal Kriging (UK) assumes a general polynomial 
trend as follows: 

 

= ݖ  + ݔܽ  ݕܾ + ܿ  
(2) 
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where ݕ ,ݔ, are the variables for the x-latitude and y-longitude, respectively, ݖ is statistically analyzed from past 
data. To avoid seasonal side effects, we estimated ݖ from the monthly data. The regression model (2) can be seen 
as a mathematical plane that fits a set of 3-dimensional points (ݔ, ,ݕ  An example of a temperature trend .(ݖ
function is illustrated in Fig. 2(a). It demonstrates the variation of temperatures observed on January 10, 2012 
when increasing latitude over all of Vietnam, as shown in Fig. 2(b). 

 
(a)                                                                             (b) 

Fig. 2. Visualization of trend function on January 10, 2012. (a) Temperature trend function, (b) the 
variation of temperatures according to the latitude. 

 
Many regionalized variables show local trends or even broader regional trends when spatially 

analyzed. Trends may be caused by natural processes that are related to directions (i.e., the effect of 
progressively increasing the latitude and other well-known dependencies between surface temperature 
and elevation [17-19]). A non-stationary regionalized variable contains two components, which are 
known as drift (or trend) and residual. The drift represents the spatial trend inherent in the data and the 
residual is the difference between the real value and the drift. First, the UK removes the drift 
component from a regionalized variable so that the residuals will be more stationary. The drift is 
estimated by a regression model which is a mathematical function that represents data trends. After 
wrapping up elimination, the variogram model of the residual is calculated and interpolated to obtain 
the elementary residual result. Finally, the drift is returned back to the estimated residuals to obtain the 
final interpolated value. 

The unknown meteorologic random variable ܼ(ݏ଴) at spatial location ݏ଴ is expressed as weighted 
linear combinations of the available meteorologic samples: 

0ݏܼ  = ෍ ݅ݏ߱ . ݅ݏܼ
ܰ

݅ = 1  
 

 
(3) 

where:    ෍ ߱௦೔ 
ே

௜ ୀ ଵ =  1 

 

 
(4) 
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N is the number of ground stations around ݏ଴, and ܼ(ݏ௜) is the meteorologic observation at station ݏ௜  
associated with weight ݓ௦௜. This method attempts to determine weights, ݓ௦௜, in order to minimize the 
Kriging error ߪ௥ଶ, which is defined as follows: 

 

                            

2ݎߪ = ݎܸܽ ൫തܼ0ݏ − =0൯ݏܼ 2ߪ  + ෍ ෍ ݅ݏ߱
ܰ

݆ =1 ݆ݏ߱ ݆݅ݏ̅ܥ
ܰ

݅=1−2 ෍ ݅ݏ߱ 0݅ݏ̅ܥ
ܰ

݅=1 ,  

 
 

(5) 

 
where ߪଶ  is the covariance of the random variable ܼ(ݏ଴) with itself and we assume that all of our 
random variables have the same variance.  ܥ௦̅೔ೕ  is the covariance between two observed meteorologic 
samples at locations ݏ௜  and ݏ௝. The corresponding problem can be represented as follows: 

 

                             

Minimize 2ߪ + ෍ ෍ ݅ݏ߱
ܰ

݆ =1 ݆ݏ߱ ݆݅ݏ̅ܥ
ܰ

݅=1 − 2 ෍ ݅ݏ߱ 0݅ݏ̅ܥ
ܰ

݅=1Subject to ෍ ωsi
N

i = 1 = 1  

 
 

(6) 

 
Solving the optimization problem (7) results in Kriging system: 
 

ێێێۏ           
Cതs10Cതs20⋮CതsΝ01ۍێ ۑۑۑے

ېۑ = ێێێۏ
Cതs11ۍێ Cതs12 ⋯ Cതs1N 1Cതs21 Cതs22 ⋯ Cതs2N 1⋮CതsN11 ⋮CതsN21 ⋱⋯⋯ ⋮CതsNN1 ۑۑۑے10⋮

ېۑ ∙ ێێۏ
ωs1ωs2⋮ωsNλۍێ ۑۑے

  ېۑ
(7) 

 
where λ is the Lagrange multiplier for error minimization. 

The covariances are retrieved from a variogram model, which represents the spatial correlation of the 
target variable as follows: 

 

݆݅ݏ̅ܥ                  = 2ߪ −  (8) (ℎ)ߛ

 
where ℎ is the distance between stations ݏ௜  and ݏ௝, and the model ߛ(ℎ) is constructed from scatter 
experimental point sets. These points are defined by calculating the semivariance and distance between 
all possible pairs of values in the region of interest. Several models can be used to fit these points, such 
as Gaussian, Spherical, and Exponential [20,21]. Then, the best-suited one is selected by comparing the 
mean square error between the variogram model and experimental data. The construction of the 
variogram model used in this work is explained in the next section. 

Based on the variogram model, the interpolation error at location ݏ଴ can be calculated in terms of the 
standard deviation as follows:  
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(0ݏ)തܧ =  ෍ ݅ݏ߱ 1=݅ܰ(ℎ݅0)ߛ  (9) 

 
where ℎ௜଴ is the distance between locations ݏ௜  and ݏ଴.  

 
2.3.2 Elevation correction for temperature 
 

It was shown in [22] that temperature decreases with altitude at approximately 6.5C per km. A 
normalization process must be applied to the GR TEMP to compensate for the altitude affects before 
interpolation. In this work, a constant coefficient obtained from the relationship between temperature 
and elevation was applied to transform the GR TEMP to a zero-level elevation temperature (equivalent 
temperature at sea level) as follows: 
 

                                  0ܶ = ܴܩܶ − 0.0065 × ܮܣ ܴܩܶ (10) 

 
where ܶீ ோ is the observed ground station temperature and ீܶܮܣ ோ is the station altitude in meters. 

 
2.3.3 ASTER DEM calibration 
 

All of the DEM of Vietnam is clipped from ASTER-DEM dataset. In order to incorporate ASTER-
DEM as the ancillary data for the spatial meteorologic data interpolation, a calibration process must be 
applied to the ASTER-DEM data using ground truth. In this research, ground station altitude (GRA) is 
used as the ground truth for ASTER-DEM calibration in the region of Vietnam. Experimental results 
show that the correlation (R2) between GRA and ASTER DEM is about 0.59. 

 
2.3.4 Ten-fold cross validation 
 

Cross validation is used to assess and choose the best interpolation methods, including the results 
from OrK, UnK, and UnK+DEM. A study of cross validation indicates that for real word datasets, the 
best method to use for model selection is ten-fold cross validation, even if computation power allows 
using more folds. The advantage of this method is that all observations are used for both training and 
validation, and each observation is used for validation exactly once [23]. 

In this research, the interpolated meteorologic data are applied to ten-fold cross validation, in which, 
98 ground stations are randomly partitioned into ten subsets equally. A single subset is retained as the 
validation data for testing, and the nine remaining others are used as interpolation data. The cross-
validation process is then repeated 10 times, with each of the ten subsets used exactly once as the 
validation data. The 10 results from the folds are then averaged to produce a final estimation. The 
relative precision of the three models was then compared in terms of mean error (ME) and mean square 
error (MSE). 

  
3. Results and Discussions 

3.1 Spatial Correlation and Variogram Modeling 
 

The spatial correlation of the regionalized variable helps to build the variogram needed for Kriging 
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interpolation, as stated in the previous section. In this section, we demonstrate the experimental results 
of the spatial correlation for temperature and humidity observed at 98 ground stations. 

With each type of meteorologic data, the correlation coefficient (ܴଶ) and distance (ܦ) was estimated 
between each pair of observed data. In particular, 98 ground stations have 98×97 pairs of two 
distinguishable stations ݏ௜  and ݏ௝. The correlation coefficient and the distance between ݏ௜  and ݏ௝ can be 
estimated from 10-year of meteorologic data and stations spatial information. A pair of stations (ݏ௜,  (௝ݏ
is featured by correlation ܴ௜௝ଶ and distance ܦ௜௝. For representing the spatial correlation between all 
pairs of ground stations meteorologic datasets, we plotted these calculated datasets on a spatial 
correlation graph with ܦ௜௝ on the X-axis and ܴ௜௝ଶ on the Y-axis. For visualization, the average of ܴ௜௝ଶ is 
taken at every quantized distance value with quantization parameter ݀ = 50 km. This averaged and 
quantized data is plotted on the average spatial correlation graph. 

 

 
Fig. 3. Spatial correlation of temperature respect to 
distance. 

Fig. 4. Spatial correlation of humidity respect 
to distance. 

 
Fig. 3 depicts the spatial correlation graph (upper) and average correlation graph (lower) of the 

temperatures measured at 98 meteorologic ground stations in Vietnam. It can be seen that the spatial 
correlation of the temperature variable slowly decreases when distance increases. High correlations 
(higher than 0.4) of temperature between two stations 700 km apart were still observed. Fig. 4 depicts 
the same humidity graphs. We can see that spatial correlation of humidity decreases faster than that of 
temperature when distance increases. High correlations of humidity between two stations 200 km apart 
were also observed. 

From Figs. 3 and 4, we can observe a significant difference in the spatial correlation between 
temperature and humidity variables. Therefore, the number of neighbor ground stations N, as stated in 
(3) and (4), for each meteorologic variable is not the same. We once again plotted the spatial correlation 
of each meteorologic variable with respect to the number of neighboring ground stations.  

Fig. 5 depicts the spatial correlation graph (upper) and average correlation graph (lower) with respect 
to the number of neighboring ground stations. It can be seen that the spatial correlation of temperature 
variable decrease slowly when the number of neighbors increases. High correlations (higher than 0.7) 
are observed when the number of neighbors is less than 10. Therefore, we use ்ܰ = 10 for the number 
of neighboring ground stations when interpolating the temperature variable. Fig. 6 depicts the humidity 
graphs. High correlations (higher than 0.6) are observed when the number of neighbors is less than 5. 
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Therefore, we use ுܰ = 5 for the number of neighboring ground stations when interpolating the 
humidity variable. 

 

  

Fig. 5. Spatial correlation of temperature respect to 
number neighbor ground stations. 

Fig. 6. Spatial correlation of humidity respect to 
number of neighbor ground stations. 

 
As stated in the previous section, covariance ̅ܥ௦೔ೕ  can be retrieved from a variogram model in (8), 

which is constructed from scatter experimental point sets. These points are calculated from the semi-
variance and distance between all possible pairs of ground stations in the period time of interest. In this 
work, one month before observation day is used for obtaining ݖ value. Several models, such as 
Gaussian, Spherical, and Exponential, which fit these points were used. We observed from the 
experimental results that the Spherical model is the best fit in terms of comparing the mean square 
error between the variogram model and experimental data. The spherical model is explained as follows: 

 

      

ො(ℎ)ߛ = ቐܿ0 + ܿ1 ቈ32 ℎܽ0 − 12 ൬ ℎܽ0൰3቉ , ℎ ≤ ܽ0ܿ0 + ܿ1 , ℎ > ܽ0 
 

(11) 

 
where ܿ଴ is the nugget,  ܿ଴  +  ܿଵ is sill, and ܽ଴ is the practical range, as visualized in Fig. 7. 

 

 

Fig. 7. Visualization of Spherical model. 
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Fig. 8. An example of Spherical model fitted to one month temperature data before March 16, 2012. 
 
Fig. 8 depicts an example of Spherical model fitted to one month of temperature data before March 

16, 2012. The upper graph shows the point sets and the lower graph shows the Spherical model fitted to 
the average value of point sets at every 10 km distance. We can see that the practical range of 
temperature is about 590 km. Fig. 9 depicts the same information as in Fig. 8 of the Spherical model 
fitted to one month’s worth of  humidity data before February 20, 2012. We can see that the practical 
range of humidity is about 282 km.  

In order to apply the Kriging interpolation to meteorologic variables observed from 98 ground 
stations at any given day, one month’s worth of meteorologic data before that day was used to construct 
Spherical model. Finally, the covariance matrix was calculated by using Eq. (8). 

 

 

Fig. 9. An example of Spherical model fitted to one month humidity data before February 20, 2012. 
 
 

3.2 Ten-fold Cross-Verification Results 
 

In order to evaluate the effectiveness of the interpolation methods, we used the root mean square 
error (RMSE), which is defined as follows: 

 

                
ܧܵܯܴ = 1ܶ ∙ ෍ ൭ݐݎݍݏ ൬ ܯ1 ∙ ෍ ൫ܼ݅ݏ − ݅ݏܼ̅ ൯2݅1=ܯ ൰൱ܶ1=ݐ  

(12) 

 
and mean percentage error (MPE), which is defined as follows: 

 

             
ܧܲܯ = 1ܶ ∙ ෍ ቆ ܯ1 ∙ ෍ หܼ݅ݏ − ݅ݏܼ̅ หܼ݅ݏ ∙ 1=ܯ100%݅ ቇܶ1=ݐ  

(13) 
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where M is the number of testing stations T is the number of tests in a ten-fold estimation; ܼ௦೔  and ܼ̅௦೔  
are  the observed meteorologic variables and its interpolated value, respectively.  

 
Table 1. Temperature models validation results   

Model RMSE (K) MPE (%) 

OrK 2.195 0.522 

UnK 2.192 0.523 

UnK+DEM 2.026 0.509 
OrK = Ordinary Kriging, UnK = Universal Kriging, DEM = Digital Elevation Model, RMSE = root mean square error, MPE = 
mean percentage error. 

 
Table 2. Relative humidity models validation results  

Model RMSE (%) MPE (%) 

OrK 7.155 8.434 

UnK 7.119 8.398 
OrK=Ordinary Kriging, UnK=Universal Kriging, RMSE = root mean square error, MPE = mean percentage error. 

 
Table 1 shows the validation results of temperature interpolation. It can be seen from the table that 

the interpolation errors of OrK are almost the same as those of UnK methods. UnK errors are the 
smallest with RMSE at 2.026K and with MPE they are 0.509%. Table 2 shows the validation results of 
relative humidity interpolation. Here, ASTER DEM is not used in interpolation. It can also be seen from 
this table that the interpolation errors of UnK are slightly lower than those of OrK. 

 
 

3.3  Interpolation Results 
 

Figs. 10 and 11 depict the interpolated temperature field 0.1o×0.1o and its interpolation error map on 
November 23, 2013 using UnK+DEM. The temperature gradually increases from the North to the 
South of Vietnam, which reflects the latitude temperature affects. It can be seen from Fig. 10 that the 
effects of altitude on mountainous regions (Northwest and Central Highlands) are different from those 
on the delta regions (Red River Delta and Mekong River Delta). Sudden changes in temperature are 
found in mountainous regions and smooth temperature gradients are found in delta regions. Fig. 11 
shows the interpolation error map in terms of the standard deviation defined in (9). This figure reveals 
the interpolation error spatially. A minimal amount of interpolation errors were observed at and nearby 
ground station regions (white spots) and they increase as the distance to the nearest ground station 
increases (black regions). 

Figs. 12 and 13 depict the interpolated relative humidity field 0.1o×0.1o and its interpolation error 
map on November 23, 2013 using UnK. In Fig. 12, the spreading of high values of humidity from the 
Northeast down to the midland region may be because of a monsoon at that time. Fig. 13 reveals the 
interpolation error spatially in terms of standard derivation defined in (9).  
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4. Conclusion 

This paper contributes to the literature on interpolation algorithms and meteorologic data processing 
by developing a Kriging model for interpolating meteorologic variables in Vietnam. Temperature and 
relative humidity data from ground stations in Vietnam were spatially interpolated using Kriging 
techniques. Three different types of Kriging methods, including OrK, UnK, and UnK+DEM, were used 
for interpolation. The ten-fold verification results show that UnK+DEM is the best model as it has the 
smallest error for temperature interpolation, whereas OrK and UnK are the almost the same accuracy 
for both temperature and relative humidity. 
 

 
Fig. 10. Interpolated temperature field in 
Vietnam, November 23, 2013. 

Fig. 11. Interpolation error map in Vietnam, 
November 23, 2013. 

 

 
Fig. 12. Interpolated relative humidity field in 
Vietnam, November 23, 2013. 

Fig. 13. Interpolation relative humidity error 
map in Vietnam, November 23, 2013. 
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