

www.kips.or.kr Copyright© 2015 KIPS

Genetic Symmetric Key Generation for IDEA

Nandini Malhotra* and Geeta Nagpal**

Abstract
Cryptography aims at transmitting secure data over an unsecure network in coded version so that only the
intended recipient can analyze it. Communication through messages, emails, or various other modes requires
high security so as to maintain the confidentiality of the content. This paper deals with IDEA’s shortcoming
of generating weak keys. If these keys are used for encryption and decryption may result in the easy prediction
of ciphertext corresponding to the plaintext. For applying genetic approach, which is well-known
optimization technique, to the weak keys, we obtained a definite solution to convert the weaker keys to stronger
ones. The chances of generating a weak key in IDEA are very rare, but if it is produced, it could lead to a huge
risk of attacks being made on the key, as well as on the information. Hence, measures have been taken to
safeguard the key and to ensure the privacy of information.

Keywords
Crossover, IDEA, Genetic Algorithm, Mutation, Symmetric Key Generation

1. Introduction

With the advent of the computer era, data security has become an urgent neccesity. To achieve this, various
data threats must be mitigated to maintain the authenticity, confidentiality, and integrity of data.

There are two cryptographic techniques—symmetric key cryptography and asymmetric key
cryptography [1]—both of which are implemented by various algorithms that are defined in this field.
In this research paper, we consider International Data Encryption Algorithm (IDEA), which is a
symmetric key algorithm, for the purpose of encryption and decryption.

A genetic algorithm (GA) is a search heuristic that is used to portray the process of natural evolution.
This algorithm provides solutions to optimization and search problems [2].

The proposed method in this paper uses a GA for the generation of a 128-bit symmetric key that is
used in IDEA. It inhibits the creation of any weak key for this cryptographic technique.

The remainder of this paper is laid out as follows: Section 2 describes the basics of IDEA and also
sheds some light on the fundamentals of the GA and its operators. Section 2.1 explains some of the
related work done so far on this issue. Section 3 includes the methodology that we adopted to generate a
symmetric key genetically. In Section 4, the results from using this methodology are illustrated. Section
5 concludes the paper and briefly mentions the areas that should be examined for future research.

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received June 19, 2013; accepted September 20, 2013; onlinefirst October 28, 2014.
Corresponding Author: Nandini Malhotra (nanhi222000@gmail.com)
* Department of Computer Science and Engineering, National Institute of Technology, Jalandhar, Punjab 144011, India

(nanhi222000@gmail.com, sikkag@gmail.com)

J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 ISSN 1976-913X (Print)
http://dx.doi.org/10.3745/JIPS.03.0017 ISSN 2092-805X (Electronic)

 Genetic Symmetric Key Generation for IDEA

240 | J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015

2. Related Work

The concepts used in this paper include the block cipher IDEA and the basics of a GA. IDEA works
on 64-bits of plaintext and a 128-bit symmetric key and involves 8 rounds. The algebraic operations
used in IDEA include XOR (bitwise addition modulo 2), Addition modulo 216 and multiplication
modulo (216 + 1). The key generation cycle differs for encryption and decryption in IDEA. It requires 52
keys that are16-bits each, where 4 keys are used for last round of output transform and 6 keys in each of
the previous 8 rounds [1].

GAs are based on the concept of ‘survival of the fittest’ and work to find the optimal or near optimal
solution for the optimization problems. The idea behind GA is to model the natural selection process
where some individuals are selected from the population and where genetic operators are applied to
produce improved generation. The genetic operators involved are:

1) Selection Operator: the motive behind this operator is to select the best parents, so as to transfer
better characteristics to next generation. The goodness of each individual in a particular
generation depends upon its fitness, which may be calculated by an objective function or by a
subjective judgment [3].

2) Crossover: the two best individuals are chosen using the selection operator and a crossover site
is randomly chosen. Bits are exchanged in the bit strings up to the crossover point.

For example:
If S1 = 11111111 and S2 = 00000000 and the crossover point is 5, then S1′=11111000 and S2′=
00000111.

Crossover is likely to produce better offspring, as compared to the parent bit strings. Crossover can be
categorized as: One point or Single, Two point or Double, Uniform, Half-Uniform, Cut and Splice.

Single crossover includes the swapping of bits across a randomly selected crossover bit as shown in
Fig. 1 below.

Fig. 1. Single crossover.

Double crossover includes the selection of two random bits and swapping the bit strings across them,

as represented in Fig. 2.
There are a few other crossover techniques that are based on swapping of bits, but these are not

discussed in detail in this paper [3].

 Crossover point

Parents:

Children:

Nandini Malhotra and Geeta Nagpal

J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 | 241

Fig. 2. Double crossover.

3) Mutation: some of the bits of the parent bit strings will be flipped or toggled in order to

maintain diversity within the population, as illustrated in Fig. 3 below.

Bit position 0 1 2 3 4 5 6 7
Before 1 1 0 1 1 0 1 0
After 1 1 0 1 0 0 1 0

Fig. 3. Mutation.

The figure above mutates the bit string around bit 4.
There are numerous explorations that have been carried out so far with regards to IDEA and the

Genetic Algorithm. Research has been executed in the field of the cryptanalysis of various rounds of
IDEA. In 1993, Hawkes extended the study of Daemen et al. [5], which identified certain weak classes
for IDEA. In 1998, Hawkes [5] presented a related key differential attack on 4 rounds of IDEA.
Moreover, he identified large weak key classes for 4.5–6.5 rounds and 8 rounds of the algorithm [5].
Biryukov et al. [6] identified a few classes of weak keys in 2002. In 2010, Zhu [7] further put forward an
attack on 5.5 rounds of IDEA. Also, in 2010, Abed [7] proved that the GA gives optimal keys and
enhances the security of the key. He used the RC4 algorithm and applied it to images [8]. In 2011,
Bhowmik and Acharyya [9] worked on images and combined GA with Blowfish. In 2012, Goyat [9]
proved that the GA maintains the strength of the asymmetric key. She presented the idea that random
numbers that are generated should be secure enough against attacks [10]. Most of the research that has
been done on IDEA, as well as using the genetic approach, involves conducting cryptanalysis on various
rounds of IDEA and on various ciphers, respectively. This research paper provides an optimal solution
for the problem of weak keys.

3. Proposed Algorithm

This section is about the new approach that we devised to overcome the shortcomings of IDEA in
regards to the generation of weaker keys.

3.1 Proposed Methodology

The weakness of the IDEA led to the generation of a symmetric key that could be used for encryption

and decryption genetically. These keys are detectable in a chosen plaintext attack. It helps in easy
anticipation of relationship between the XOR sum of the plaintext and the ciphertext.

Crossover points

Parents:

Children:

 Genetic Symmetric Key Generation for IDEA

242 | J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015

For example:
1. All zeros (0x0000000000000000)
2. All ones (0xFFFFFFFFFFFFFFFF)
3. Alternating ones + zeros (0x0101010101010101)

Our algorithm is based on four classes of weak keys that have been identified [4].
1) The first category of weak keys includes the keys that are responsible for a linear factor (i.e., a

linear relation between certain input and output bits that have a definite probability). The keys
are of the form:

0000 00ab 0000 000000c0 0000 000d xyzt
where,

a = 0, 1, 2, 3
b = 0, 8
c = 0, 2, 4, 6, 8, 10, 12, 14
d = 0, 1
x, y, z, t = any value
(223 keys)

2) The second category of weak keys includes the keys for which a change in certain bits of input
makes the change in output bits identifiable with a definite probability. The keys are of the form:
0000 00ax yzb0 0000 00tc 0000 000u vwd0
where,

a = 0, 1, 2, 3
b = 0, 8
c = 0, 8
d = 0, 2, 4, 6, 8, 10, 12, 14
x, y, z, t, u, v, w = any value
(235 keys)

3) The third category of weak keys includes the keys that are predictable if certain ciphertext bits are
known to correspond to the plaintext. The keys that belong to this category are of the form:
0000 00ax yzb0 0000 00tu v000 cwsq prd0
where,

a = 0, 1, 2, 3
b = 0, 8
c = 0, 1
d = 0, 2, 4, 6, 8, 10, 12, 14
x, y, z, t, u, v, w, s, q, p, r = any value
(251 keys)

4) Another category of weak keys for IDEA are identified as:
0000 0000 0x00 00000000 000x xxxx x000
where ‘x’ can be any hexadecimal number.

These key forms make the bitwise XOR of ciphertext bits predictable from the bitwise XOR of
plaintext bits. The detected weak key cannot be used for the purpose of encoding and decoding the

Nandini Malhotra and Geeta Nagpal

J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 | 243

information. Hence, it requires further processing. The proposed algorithm solves the defined problem
by applying the GA to the weak key. This results in a stronger key that can be used for the purpose of
encipherment and decipherment being returned.

3.2 Genetic Key Generation – The Proposed Algorithm

To overcome the problem of weak keys in IDEA, we treated a weak key with the GA to convert it into

a stronger one.
Diagrammatically, the proposed algorithm can be represented as shown in Fig. 4.

Fig. 4. Flowchart for the genetic symmetric key generation for IDEA.

Yes

No

K’=128-bit

64-bit64-bit

64-bit64-bit

Weak

Strong

K=128-bit

Generate Initial Population

Random Key Selector

Fitness Check

Break ‘K’ into two sub-keys (64-bit each)

Parent1 Parent 2

Child 2

Crossover

Concatenate

Mutation

IDEA

K=K′?

Child 1

 Genetic Symmetric Key Generation for IDEA

244 | J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015

The algorithm can be explained by the following steps:
Step 1: Generate the initial population of a definite population size (POP_SIZE) randomly. Each key

generated is 128-bits in length.
Step 2: Select one random key (K) from the generated population of the specific POP_SIZE.
Step 3: To check whether the key (K) is a strong or a weak key, perform a fitness check based on the

categories of weak keys that were produced earlier. Each weak key category has a predefined format. If
the key is found to be weak, go to Step 4. Otherwise go to Step 8.

Step 4: Divide ‘K’ into two sub-keys (K1 and K2) that are 64-bits each. These represent the two
parents who will participate in the genetic process to produce improved offspring.

Step 5: Randomly generate the crossover bit from 0-63 and perform the crossover between K1 and K2
to produce two child bit strings (C1 and C2).

Step 6: After crossover, concatenate the two offspring (C1 and C2) to generate a 128-bit key (K′). If
the newly generated key (K′) is same as that of the input key (K) with the crossover operation, perform
the operation again.

Step 7: Once a new key is produced, perform a mutation operation. Randomly generate ‘N’ numbers
from 0-127 and toggle the bits present at those N bit locations. Assign this new key to K. Go to Step 3
and perform a fitness check again.

Step 8: Use the strong key that was generated as a symmetric key in IDEA.
The strong key returned by the algorithm is further used for the purpose of encipherment in IDEA.

The IDEA encryption process is performed as described in the steps for a standard algorithm [1]. IDEA,
which is a symmetric key cipher, uses the same strong key for the purpose of decipherment as well.

4. Results and Discussions

We implemented the algorithm using Java Standard Edition ver. 4 update 21, (i.e. build 1.7.0_ 21-
b11). The Integrated Development Environment (IDE) used to develop the code was NetBeans IDE
7.0.1. Apart from the technical details it is worth mentioning that NetBeans is a widely used framework
that is fully equipped to work with Java. Java is an object-oriented language that follows the WORA
(Write Once Run Anywhere) concept. Thus, code developed on one platform can be executed on any
other platform too. Hence, Java is a good option for developing the code on.

4.1 Illustration

This section illustrates the results obtained by the implementation of the algorithm. In the first step of

the algorithm, the initial population of a defined size (POP_SIZE) is generated. The POP_SIZE
considered in this implementation is 20. Thus, 20 keys that are 128-bits each are produced. Moreover,
all the keys produced are weak and belong to one category or another, as defined in Section 3.1. The
weak keys that are generated are as follows:

{00000028000000000040000000006e9e,000000280000000000c0000000007099,000000280000000000
60000000002994,00000000000000000060000000009ad0,00000020000000000040000000005d34, 0000
001db080000000580000000ac0e0, 000000265a00000000980000000660e0, 0000003c44800000006800
0000018de0,0000002033800000004000000009ec20,0000002a0b00000000d80000000c12a0,00000010ec

Nandini Malhotra and Geeta Nagpal

J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 | 245

8000000070a0001c32ad60,00000025d1000000008af0000b561960,0000000dff000000000bd00004eb942
0,000000344a000000009d500012e89460,00000006008000000070e0001e754260,000000000500000000
0000052f230000,00000000090000000000000bb218f000,00000000060000000000000b31b7d000,00000
00003000000000000044e002000, 0000000005000000000000075006a000}

From the 20 weak keys generated, one of the keys is randomly selected. In this illustration, a
randomly selected key is:

0000000dff000000000bd00004eb9420
The binary equivalent of the Hex key is:
000000000000000000000000000011011111111100000000000000000000000000000000000010111101

00000000000000000100111010111001010000100000
This key belongs to the weak key Category 3, as defined earlier.
As a weak key cannot be used for the purpose of encryption in IDEA, we applied GA, so as to convert

the selected weak key into a stronger one. Dividing the 128-bit key into two sub-keys of 64-bit each
produces the two parent keys of:

Parent 1: 0000000000000000000000000000110111111111000000000000000000000000
Parent 2: 0000000000001011110100000000000000000100111010111001010000100000
Next, apply the crossover operator to the sub-keys. In our case, the crossover bit that was randomly

selected from 0-63 is 29. The bits were then swapped over this bit, which resulted in two child bit
strings:

Child 1: 0000000000000000000000000000110000000100111010111001010000100000
Child 2: 0000000000001011110100000000000111111111000000000000000000000000
The concatenated 128-bit key after crossover is:
000000000000000000000000000011000000010011101011100101000010000000000000000010111101

00000000000111111111000000000000000000000000
Next, randomly generate 10 mutation bits and toggle those bits. The key after mutation is:
000000000001000001000000001011000000010011101011100101000010011000000100000010111101

10010000000011111111000000000000000001000000
The hex equivalent of this key is:
0010402c04eb9426040bd900ff000040
A fitness check is then performed again for this final key, which declares this as a strong key.

4.2 Performance Analysis

In comparing the two keys, one in the original form and the second, which is generated by applying

GA to the original, we observed that the original key has more bits that are ‘0’ than the newly generated,
genetically stronger key. This is illustrated as shown below.

Old weak key:
0000000dff000000000bd00004eb9420
New strong key:
0010402c04eb9426040bd900ff000040
This strong key is the final key that is given to IDEA for encryption. The same key is stored in a file so

that it can then be used for the decryption process. Evidently, any weak key that would have been
generated can be treated with GA. Thus, we concluded that GA can solve the problem of weak keys in

 Genetic Symmetric Key Generation for IDEA

246 | J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015

IDEA.
Moreover, the CPU time that corresponds to the file size is as shown below. Fig. 5 clearly represents

that CPU Time is directly proportional to the file size. Also, it takes more time to encrypt than to
decrypt, as GA is applied only during key generation before encryption. For decryption, the key is
directly recovered from the file where it is stored.

The second graph in Fig. 6 depicts that the CPU Time taken by IDEA is much more than the time

taken by GA. Thus, we concluded that applying GA does not result in noticeable overhead. Moreover,
we observed that the CPU Time taken by GA is independent of the file size. It is almost constant.
Hence, it is an optimal solution for the considered problem.

5. Conclusion

To conclude, this paper is an effort to introduce a genetic approach in the symmetric key generation
of IDEA, so as to solve the problem of weak keys. The performance of the proposed algorithm makes
the approach worth adopting, as it covers the risk of producing any type of weak keys. The best feature
of this algorithm is that it can be applied to any type of information be text, images, or multimedia
(audio or video).

In short, our approach mitigates the occurrence of any possible weak keys in IDEA. Hence, it
mitigates the possible attacks on ciphertext that has been encrypted using IDEA.

The work in this paper has a wide scope and can be extended in the field of cryptography. It is being
applied to information that is encoded and decoded using IDEA. It can also be extended to the
symmetric key generation of all of the algorithms that involve the risk of producing weak keys.
Moreover, it can be extended in reference to the genetic operators of crossover and mutation. In this
paper, one-point crossover has been used, which may be replaced by any other category of a crossover
operator. Similarly, mutation may be applied on a fixed or variable number of bits. Moreover, block size
can be varied from two 64-bit blocks to four 32-bit blocks using the divide and conquer approach. It can
be extended to asymmetric keys as well. Furthermore, the number of iterations can be increased to
achieve improved results.

Fig. 6. Comparison of the CPU Time taken by IDEA
and the GA with regard to file size.

Fig. 5. File size vs. CPU Time for encryption and
decryption.

Nandini Malhotra and Geeta Nagpal

J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 | 247

References

[1] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in C, 2nd ed. New York, NY: John
Wiley & Sons, 1996.

[2] D. E. Goldberg, Genetic Algorithms, in Search, Optimization & Machine Learning. Reading, MA: Addison-
Wesley, 2009.

[3] R. Ghosh, “A modified improved text encryption approach inspired by genetic algorithm techniques using RSA
algorithm,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 2, no.
6, pp. 263-268, Jun. 2012.

[4] J. Daemen, R. Govaerts, and J. Vandewalle, “Weak keys for IDEA,” in Proceedings of the 13th Annual
International Cryptology Conference (CRYPTO’93), Santa Barbara, CA, 1994, pp. 224-230.

[5] P. Hawkes, “Differential-linear weak key classes of IDEA,” in Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT’98), Espoo, Finland, 1998, pp. 112-126.

[6] A. Biryukov, J. Nakahara Jr, B. Preneel, and J. Vandewalle, “New weak-key classes of IDEA,” in Proceedings of the
4th International Conference on Information and Communications Security (ICICS2002), Singapore, 2002, pp.
315-326.

[7] D. H. Zhu, “An attack on 5.5-round IDEA,” in Proceedings of the 2010 IEEE International Conference
on Intelligent Computing and Intelligent Systems (ICIS2010), Xiamen, China, 2010, pp 18-21.

[8] I. A. Abed, “Finding the best key stream by using genetic algorithm for image encryption,” Journal of Basrah
Researches (Sciences), vol. 36, no. 3, pp. 72-80, Jun. 2010.

[9] S. Bhowmik and S. Acharyya, “Image cryptography: the genetic algorithm approach,” in Proceedings of the 2011
IEEE International Conference on Computer Science and Automation Engineering (CSAE2011), Shanghai, China,
2011, pp. 223-227.

[10] S. Goyat, “Genetic key generation for public key cryptography,” International Journal of Soft Computing and
Engineering (IJSCE), vol. 2, no. 3, Jul. 2012.

Nandini Malhotra http://orcid.org/0000-0002-1006-4337

She received the Master’s degree in Computer Science and Engineering from
National Institute of Technology, Jalandhar in 2013. She completed her bachelor’s
degree in Computer Science and Engineering from Punjabi University, Patiala. Her
research interests include Cryptography, Network Security and Object Oriented
Programming.

Geeta Nagpal

She received the Ph.D. degree in Computer Science and Engineering from National
Institute of Technology, Jalandhar, India in 2013. She completed her Master’s degree
in Computer Science from Punjab Agricultural University, Ludhiana. She is presently
working as Associate Professor in the Department of Computer Science and
Engineering at National Institute of Technology, Jalandhar. Her research interests are
Software Engineering, Databases and Data Mining.

