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Abstract 
Cryptography aims at transmitting secure data over an unsecure network in coded version so that only the 
intended recipient can analyze it. Communication through messages, emails, or various other modes requires 
high security so as to maintain the confidentiality of the content. This paper deals with IDEA’s shortcoming 
of generating weak keys. If these keys are used for encryption and decryption may result in the easy prediction 
of ciphertext corresponding to the plaintext. For applying genetic approach, which is well-known 
optimization technique, to the weak keys, we obtained a definite solution to convert the weaker keys to stronger 
ones. The chances of generating a weak key in IDEA are very rare, but if it is produced, it could lead to a huge 
risk of attacks being made on the key, as well as on the information. Hence, measures have been taken to 
safeguard the key and to ensure the privacy of information. 
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1. Introduction 

With the advent of the computer era, data security has become an urgent neccesity. To achieve this, various 
data threats must be mitigated to maintain the authenticity, confidentiality, and integrity of data. 

There are two cryptographic techniques—symmetric key cryptography and asymmetric key 
cryptography [1]—both of which are implemented by various algorithms that are defined in this field. 
In this research paper, we consider International Data Encryption Algorithm (IDEA), which is a 
symmetric key algorithm, for the purpose of encryption and decryption.  

A genetic algorithm (GA) is a search heuristic that is used to portray the process of natural evolution. 
This algorithm provides solutions to optimization and search problems [2]. 

The proposed method in this paper uses a GA for the generation of a 128-bit symmetric key that is 
used in IDEA. It inhibits the creation of any weak key for this cryptographic technique. 

The remainder of this paper is laid out as follows: Section 2 describes the basics of IDEA and also 
sheds some light on the fundamentals of the GA and its operators. Section 2.1 explains some of the 
related work done so far on this issue. Section 3 includes the methodology that we adopted to generate a 
symmetric key genetically. In Section 4, the results from using this methodology are illustrated. Section 
5 concludes the paper and briefly mentions the areas that should be examined for future research. 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received June 19, 2013; accepted September 20, 2013; onlinefirst October 28, 2014. 
Corresponding Author: Nandini Malhotra (nanhi222000@gmail.com) 
* Department of Computer Science and Engineering, National Institute of  Technology, Jalandhar, Punjab 144011, India 

(nanhi222000@gmail.com, sikkag@gmail.com) 

J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 ISSN 1976-913X (Print) 
http://dx.doi.org/10.3745/JIPS.03.0017 ISSN 2092-805X (Electronic) 



 Genetic Symmetric Key Generation for IDEA 

 

240 | J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 

2. Related Work 

The concepts used in this paper include the block cipher IDEA and the basics of a GA. IDEA works 
on 64-bits of plaintext and a 128-bit symmetric key and involves 8 rounds. The algebraic operations 
used in IDEA include XOR (bitwise addition modulo 2), Addition modulo 216 and multiplication 
modulo (216 + 1). The key generation cycle differs for encryption and decryption in IDEA. It requires 52 
keys that are16-bits each, where 4 keys are used for last round of output transform and 6 keys in each of 
the previous 8 rounds [1]. 

GAs are based on the concept of ‘survival of the fittest’ and work to find the optimal or near optimal 
solution for the optimization problems. The idea behind GA is to model the natural selection process 
where some individuals are selected from the population and where genetic operators are applied to 
produce improved generation. The genetic operators involved are: 

1) Selection Operator: the motive behind this operator is to select the best parents, so as to transfer 
better characteristics to next generation. The goodness of each individual in a particular 
generation depends upon its fitness, which may be calculated by an objective function or by a 
subjective judgment [3]. 

2) Crossover: the two best individuals are chosen using the selection operator and a crossover site 
is randomly chosen. Bits are exchanged in the bit strings up to the crossover point. 

For example: 
If S1 = 11111111 and S2 = 00000000 and the crossover point is 5, then S1′=11111000 and S2′= 
00000111. 

Crossover is likely to produce better offspring, as compared to the parent bit strings. Crossover can be 
categorized as: One point or Single, Two point or Double, Uniform, Half-Uniform, Cut and Splice. 

Single crossover includes the swapping of bits across a randomly selected crossover bit as shown in 
Fig. 1 below. 

 
 

 
Fig. 1. Single crossover. 

 
Double crossover includes the selection of two random bits and swapping the bit strings across them, 

as represented in Fig. 2. 
There are a few other crossover techniques that are based on swapping of bits, but these are not 

discussed in detail in this paper [3]. 
 
 

            Crossover point 

Parents:
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Fig. 2. Double crossover. 
 
3) Mutation: some of the bits of the parent bit strings will be flipped or toggled in order to 

maintain diversity within the population, as illustrated in Fig. 3 below. 
 

Bit position 0 1 2 3 4 5 6 7 
Before 1 1 0 1 1 0 1 0 
After 1 1 0 1 0 0 1 0 

Fig. 3. Mutation. 
 
The figure above mutates the bit string around bit 4. 
There are numerous explorations that have been carried out so far with regards to IDEA and the 

Genetic Algorithm. Research has been executed in the field of the cryptanalysis of various rounds of 
IDEA. In 1993, Hawkes extended the study of Daemen et al. [5], which identified certain weak classes 
for IDEA. In 1998, Hawkes [5] presented a related key differential attack on 4 rounds of IDEA. 
Moreover, he identified large weak key classes for 4.5–6.5 rounds and 8 rounds of the algorithm [5]. 
Biryukov et al. [6] identified a few classes of weak keys in 2002. In 2010, Zhu [7] further put forward an 
attack on 5.5 rounds of IDEA. Also, in 2010, Abed [7] proved that the GA gives optimal keys and 
enhances the security of the key. He used the RC4 algorithm and applied it to images [8]. In 2011, 
Bhowmik and Acharyya [9] worked on images and combined GA with Blowfish. In 2012, Goyat [9] 
proved that the GA maintains the strength of the asymmetric key. She presented the idea that random 
numbers that are generated should be secure enough against attacks [10]. Most of the research that has 
been done on IDEA, as well as using the genetic approach, involves conducting cryptanalysis on various 
rounds of IDEA and on various ciphers, respectively. This research paper provides an optimal solution 
for the problem of weak keys. 

 
 

3. Proposed Algorithm 

This section is about the new approach that we devised to overcome the shortcomings of IDEA in 
regards to the generation of weaker keys. 

 
3.1 Proposed Methodology 

 
The weakness of the IDEA led to the generation of a symmetric key that could be used for encryption 

and decryption genetically. These keys are detectable in a chosen plaintext attack. It helps in easy 
anticipation of relationship between the XOR sum of the plaintext and the ciphertext. 

Crossover points

Parents:

Children:
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For example:  
1. All zeros (0x0000000000000000) 
2. All ones (0xFFFFFFFFFFFFFFFF) 
3. Alternating ones + zeros (0x0101010101010101)  
 
Our algorithm is based on four classes of weak keys that have been identified [4]. 
1) The first category of weak keys includes the keys that are responsible for a linear factor (i.e., a 

linear relation between certain input and output bits that have a definite probability). The keys 
are of the form: 

0000 00ab 0000 000000c0 0000 000d xyzt 
where, 

a = 0, 1, 2, 3 
b = 0, 8 
c = 0, 2, 4, 6, 8, 10, 12, 14 
d = 0, 1 
x, y, z, t = any value 
(223 keys) 

2) The second category of weak keys includes the keys for which a change in certain bits of input 
makes the change in output bits identifiable with a definite probability. The keys are of the form: 
0000 00ax yzb0 0000 00tc 0000 000u vwd0 
where, 

a = 0, 1, 2, 3 
b = 0, 8 
c = 0, 8 
d = 0, 2, 4, 6, 8, 10, 12, 14 
x, y, z, t, u, v, w = any value 
(235 keys) 

3) The third category of weak keys includes the keys that are predictable if certain ciphertext bits are 
known to correspond to the plaintext. The keys that belong to this category are of the form: 
0000 00ax yzb0 0000 00tu v000 cwsq prd0 
where, 

a = 0, 1, 2, 3 
b = 0, 8 
c = 0, 1 
d = 0, 2, 4, 6, 8, 10, 12, 14 
x, y, z, t, u, v, w, s, q, p, r = any value 
(251 keys) 

4) Another category of weak keys for IDEA are identified as: 
0000 0000 0x00 00000000 000x xxxx x000 
where ‘x’ can be any hexadecimal number. 

These key forms make the bitwise XOR of ciphertext bits predictable from the bitwise XOR of 
plaintext bits. The detected weak key cannot be used for the purpose of encoding and decoding the 
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information. Hence, it requires further processing. The proposed algorithm solves the defined problem 
by applying the GA to the weak key. This results in a stronger key that can be used for the purpose of 
encipherment and decipherment being returned. 

 
3.2 Genetic Key Generation – The Proposed Algorithm 

 
To overcome the problem of weak keys in IDEA, we treated a weak key with the GA to convert it into 

a stronger one. 
Diagrammatically, the proposed algorithm can be represented as shown in Fig. 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Flowchart for the genetic symmetric key generation for IDEA. 
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The algorithm can be explained by the following steps:  
Step 1: Generate the initial population of a definite population size (POP_SIZE) randomly. Each key 

generated is 128-bits in length. 
Step 2: Select one random key (K) from the generated population of the specific POP_SIZE. 
Step 3: To check whether the key (K) is a strong or a weak key, perform a fitness check based on the 

categories of weak keys that were produced earlier. Each weak key category has a predefined format. If 
the key is found to be weak, go to Step 4. Otherwise go to Step 8. 

Step 4: Divide ‘K’ into two sub-keys (K1 and K2) that are 64-bits each. These represent the two 
parents who will participate in the genetic process to produce improved offspring. 

Step 5: Randomly generate the crossover bit from 0-63 and perform the crossover between K1 and K2 
to produce two child bit strings (C1 and C2). 

Step 6: After crossover, concatenate the two offspring (C1 and C2) to generate a 128-bit key (K′). If 
the newly generated key (K′) is same as that of the input key (K) with the crossover operation, perform 
the operation again. 

Step 7: Once a new key is produced, perform a mutation operation. Randomly generate ‘N’ numbers 
from 0-127 and toggle the bits present at those N bit locations. Assign this new key to K. Go to Step 3 
and perform a fitness check again. 

Step 8: Use the strong key that was generated as a symmetric key in IDEA. 
The strong key returned by the algorithm is further used for the purpose of encipherment in IDEA. 

The IDEA encryption process is performed as described in the steps for a standard algorithm [1]. IDEA, 
which is a symmetric key cipher, uses the same strong key for the purpose of decipherment as well.  

 
 

4. Results and Discussions 

We implemented the algorithm using Java Standard Edition ver. 4 update 21, (i.e. build 1.7.0_ 21-
b11). The Integrated Development Environment (IDE) used to develop the code was NetBeans IDE 
7.0.1. Apart from the technical details it is worth mentioning that NetBeans is a widely used framework 
that is fully equipped to work with Java. Java is an object-oriented language that follows the WORA 
(Write Once Run Anywhere) concept. Thus, code developed on one platform can be executed on any 
other platform too. Hence, Java is a good option for developing the code on. 

 
4.1 Illustration 

 
This section illustrates the results obtained by the implementation of the algorithm. In the first step of 

the algorithm, the initial population of a defined size (POP_SIZE) is generated. The POP_SIZE 
considered in this implementation is 20. Thus, 20 keys that are 128-bits each are produced. Moreover, 
all the keys produced are weak and belong to one category or another, as defined in Section 3.1. The 
weak keys that are generated are as follows: 

{00000028000000000040000000006e9e,000000280000000000c0000000007099,000000280000000000
60000000002994,00000000000000000060000000009ad0,00000020000000000040000000005d34, 0000 
001db080000000580000000ac0e0, 000000265a00000000980000000660e0, 0000003c44800000006800 
0000018de0,0000002033800000004000000009ec20,0000002a0b00000000d80000000c12a0,00000010ec
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8000000070a0001c32ad60,00000025d1000000008af0000b561960,0000000dff000000000bd00004eb942
0,000000344a000000009d500012e89460,00000006008000000070e0001e754260,000000000500000000
0000052f230000,00000000090000000000000bb218f000,00000000060000000000000b31b7d000,00000
00003000000000000044e002000, 0000000005000000000000075006a000} 

From the 20 weak keys generated, one of the keys is randomly selected. In this illustration, a 
randomly selected key is: 

0000000dff000000000bd00004eb9420 
The binary equivalent of the Hex key is: 
000000000000000000000000000011011111111100000000000000000000000000000000000010111101

00000000000000000100111010111001010000100000 
This key belongs to the weak key Category 3, as defined earlier. 
As a weak key cannot be used for the purpose of encryption in IDEA, we applied GA, so as to convert 

the selected weak key into a stronger one. Dividing the 128-bit key into two sub-keys of 64-bit each 
produces the two parent keys of: 

Parent 1: 0000000000000000000000000000110111111111000000000000000000000000 
Parent 2: 0000000000001011110100000000000000000100111010111001010000100000 
Next, apply the crossover operator to the sub-keys. In our case, the crossover bit that was randomly 

selected from 0-63 is 29. The bits were then swapped over this bit, which resulted in two child bit 
strings: 

Child 1: 0000000000000000000000000000110000000100111010111001010000100000 
Child 2: 0000000000001011110100000000000111111111000000000000000000000000 
The concatenated 128-bit key after crossover is: 
000000000000000000000000000011000000010011101011100101000010000000000000000010111101

00000000000111111111000000000000000000000000 
Next, randomly generate 10 mutation bits and toggle those bits. The key after mutation is: 
000000000001000001000000001011000000010011101011100101000010011000000100000010111101

10010000000011111111000000000000000001000000 
The hex equivalent of this key is: 
0010402c04eb9426040bd900ff000040 
A fitness check is then performed again for this final key, which declares this as a strong key. 
 

4.2 Performance Analysis 
 
In comparing the two keys, one in the original form and the second, which is generated by applying 

GA to the original, we observed that the original key has more bits that are ‘0’ than the newly generated, 
genetically stronger key. This is illustrated as shown below. 

Old weak key:  
0000000dff000000000bd00004eb9420 
New strong key: 
0010402c04eb9426040bd900ff000040 
This strong key is the final key that is given to IDEA for encryption. The same key is stored in a file so 

that it can then be used for the decryption process. Evidently, any weak key that would have been 
generated can be treated with GA. Thus, we concluded that GA can solve the problem of weak keys in 



 Genetic Symmetric Key Generation for IDEA 

 

246 | J Inf Process Syst, Vol.11, No.2, pp.239~247, June 2015 

 

IDEA. 
Moreover, the CPU time that corresponds to the file size is as shown below. Fig. 5 clearly represents 

that CPU Time is directly proportional to the file size. Also, it takes more time to encrypt than to 
decrypt, as GA is applied only during key generation before encryption. For decryption, the key is 
directly recovered from the file where it is stored. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
The second graph in Fig. 6 depicts that the CPU Time taken by IDEA is much more than the time 

taken by GA. Thus, we concluded that applying GA does not result in noticeable overhead. Moreover, 
we observed that the CPU Time taken by GA is independent of the file size. It is almost constant. 
Hence, it is an optimal solution for the considered problem. 

 
 

5. Conclusion 

To conclude, this paper is an effort to introduce a genetic approach in the symmetric key generation 
of IDEA, so as to solve the problem of weak keys. The performance of the proposed algorithm makes 
the approach worth adopting, as it covers the risk of producing any type of weak keys. The best feature 
of this algorithm is that it can be applied to any type of information be text, images, or multimedia 
(audio or video). 

In short, our approach mitigates the occurrence of any possible weak keys in IDEA. Hence, it 
mitigates the possible attacks on ciphertext that has been encrypted using IDEA. 

The work in this paper has a wide scope and can be extended in the field of cryptography. It is being 
applied to information that is encoded and decoded using IDEA. It can also be extended to the 
symmetric key generation of all of the algorithms that involve the risk of producing weak keys. 
Moreover, it can be extended in reference to the genetic operators of crossover and mutation. In this 
paper, one-point crossover has been used, which may be replaced by any other category of a crossover 
operator. Similarly, mutation may be applied on a fixed or variable number of bits. Moreover, block size 
can be varied from two 64-bit blocks to four 32-bit blocks using the divide and conquer approach. It can 
be extended to asymmetric keys as well. Furthermore, the number of iterations can be increased to 
achieve improved results. 

 

Fig. 6. Comparison of the CPU Time taken by IDEA 
and the GA with regard to file size. 

Fig. 5. File size vs. CPU Time for encryption and 
decryption. 
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