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Abstract 
In this paper, we propose a maximum entropy-based model, which can mathematically explain the bio-
molecular event extraction problem. The proposed model generates an event table, which can represent the 
relationship between an event trigger and its arguments. The complex sentences with distinctive event 
structures can be also represented by the event table. Previous approaches intuitively designed a pipeline 
system, which sequentially performs trigger detection and arguments recognition, and thus, did not clearly 
explain the relationship between identified triggers and arguments. On the other hand, the proposed model 
generates an event table that can represent triggers, their arguments, and their relationships. The desired 
events can be easily extracted from the event table. Experimental results show that the proposed model can 
cover 91.36% of events in the training dataset and that it can achieve a 50.44% recall in the test dataset by 
using the event table. 
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1. Introduction 

To analyze biomedical literature, some previous approaches have focused only on recognizing named 
entities (such as proteins), while some recent approaches have emphasized the problem of identifying 
the interaction between two entities [1-6]. They are interested in extracting binary relations, such as 
protein-protein interactions and disease-gene associations. However, such binary relations do not 
provide a deep analysis of biomedical phenomena. Consequently, a bio-event extraction task is required 
to recognize bio-molecular events that describe a change in the state of the bio-molecular event [7]. 

For this task, we tried to identify a set of events where each event consisted of a trigger and its 
arguments [7]. In the example of Fig. 1, a set {(event1), (event2)} is recognized and the trigger is 
identified as promotes, and its arguments, such as theme and cause, are also identified. We assumed that 
the biomedical text was already analyzed with a named entity recognizer, which is a part-of-speech 
tagger, and a dependency parser, as shown in the lower portion of Fig. 1. 
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The difficulties of bio-molecular event extraction are shown in Fig. 2. In this figure, only Fig. 2(a) is 
the correct event extraction from among many other possible candidates. One of the difficult event 
extractions is the case when an event can take other events as its argument [8,9]. For example, (event2) 
takes (event1) as its theme argument, as shown in Fig. 2(a). Furthermore, a correct trigger can be missed, 
such as in Fig. 2(b) and (f) without the gene expression (GE) trigger production. On the opposite hand, 
an incorrect trigger can be detected, such as in the trigger activity shown in (d). Even if all of the correct 
triggers are detected, there is the chance that an argument cannot be detected, or that the argument type 
will be incorrectly identified. Compared with the correct event (event2) at (a), for example, the incorrect 
event (event4) at (c) takes the incorrect theme argument and no correct cause argument. Even if the 
correct events are detected, some incorrect events can be unnecessarily detected, as in the event (event6) 
at (e).  

 

Fig. 1.  Bio-molecular event examples extracted from an analyzed sentence. 
 
In this paper, we propose a model for bio-molecular event extraction that estimates the probabilities 

for generating all possible sets of bio-molecular events from a sentence, and that selects the best event 
set with the highest probability value. The remainder of this paper is organized as follows: Section 2 
surveys some previous approaches, and Section 3 explains the proposed model for bio-molecular event 
extraction. Then, in Section 4, we demonstrate the experimental results, and the characteristics of the 

proposed model conclude the paper in Section 5.  
 
 

2. Previous Work 

For bio-event extraction, most approaches first detect the triggers in a sentence, and then they obtain 
the edges that represent the relationship between a trigger and its arguments [7]. Also, they actively 
utilize dependency parsing information to detect the edges. This is because several previous approaches 
have already improved their performance by using features extracted from dependency parsing 
information [4,5,10-12]. Furthermore, the distance between an event trigger and its arguments tends to 
be much shorter in the dependency path than in the sentence [8]. On the other hand, they can be 
classified into rule-based approaches, machine learning based approaches, and dictionary and machine 
learning based approaches. 

First, the rule-based approaches automatically draw out some draft event extraction rules from a 
training set, and then refine these rules that are defined by experts [13-15]. These accurate event 
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extraction rules allow for the rule-based approaches to indicate a comparatively high-precision value. 
They are very superior to other approaches for simple events. However, these approaches cannot 
guarantee a reasonable recall on difficult events, including binding and regulations. Additionally, the 
accuracy can be overly dependent on the expert’s ability. Therefore, modifying the refined rules and 
changing the features used for constructing the draft rules is a very difficult task. 

 

(a) (b) 

 

(c) (d) 

(e) (f) 

Fig. 2.  Candidate event sets extracted from the same sentence. 
 
Second, the machine learning based approaches focus on assigning an event type to an individual 

token or recognizing an individual relation between a trigger candidate and its argument candidate 
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[8,16,17]. However, the approaches do not mathematically describe how to decompose the problem of 
extracting the events from a document into the problem of recognizing the individual trigger and the 
problem of detecting the arguments. Even though these sub problems can use the same machine 
learning technique with similar features, the approaches also cannot explain the relationship. 

Third, the dictionary and machine learning based approaches use a dictionary for the trigger 
detection, and a machine learning technique for the argument recognition [9,18,19]. However, these 
approaches are expensive when it comes to building the dictionary, because the dictionary requires the 
expert’s effort. 

In this paper, we propose a model to clearly explain the characteristics of the bio-molecular event 
extraction problem by using mathematical modeling. In order to clearly describe the connection 
between the trigger detection step and the argument recognition step, our proposed model changes the 
event extraction problem into the problem of generating an event table, which includes both unary 
entries for triggers and binary entries for arguments. For the purpose of significantly simplifying the 
process of solving an event extraction problem by focusing only on the binary relationship between an 
event trigger and each of its arguments, the proposed model converts the event table generation 
problem into the problem of generating each entry in the event table. The proposed model is learned 
from a training set without using the expert’s support.  

 
 

3. The Proposed Bio-Molecular Event Extraction Model 

In this chapter, we propose a maximum entropy-based model for bio-molecular event extraction. As 
shown in Fig. 3, the proposed model consists of a preprocessing step, while analyzing the given 
document by using natural language processing tools, such as a stemmer, a part-of-speech tagger, and a 
dependency parser. As the first step in the proposed model, the generation step generates an event table, 
instead of generating the events themselves. This is done for the purpose of reducing the complexity of 
solving the event extraction problem, by focusing only on the binary relationship between an event 
trigger and its argument. Then, the desired events can be easily extracted from the event table. Section 
3.1 defines how to estimate the probabilities of generating every entry in the event table. Section 3.3 
illustrates the relationship between the event table and a set of the events. 

 

 
Fig. 3. The proposed bio-molecular event extraction model. 

 
3.1 Generation of the Event Table 

 
The proposed model estimates the probabilities of generating the sets of bio-molecular events from 

the document DocN E, and selects the best event set E with the highest probability, as represented on the 
left hand side of Eq. (1). NLP tools, such as a stemmer, a part-of-speech tagger, and a dependency 
parser, analyze the document DocNE. In order to simplify the event extraction problem, some 
equations are derived in the following way: first, the document DocN E is divided into two sentence 
sets of S, which consist of sentences without any named entity; and SN E, which consists of sentences 
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with named entities, as described on the right hand side of Eq. (1). 
 ܲ(	 	|											௔௥௚௠௔௫ =										  (ோܿ݋ܦ	 ܲ( |௔௥௚௠௔௫ Sோ, Sɸ )   (1) 										≈ ܲ( |௔௥௚௠௔௫ Sோ ) (2) 										= ܲ( ଵ௠ܧ భ೘௔௥௚௠௔௫ܧ						| ଵܵ௠ே ா భ೘௔௥௚௠௔௫ܧ								=										 (3) ( ܲ( ଵܧ | ଵܵ௠ே ா ) × ܲ( ଶܧ | ଵܵ௠ே ா, (	ଵܧ × … × ܲ( ௠ܧ | ଵܵ௠ே ா,  ଵ௠ିଵ) (4)ܧ

)భ೘௔௥௚௠௔௫ෑܲܧ								≈										 ௜ܧ | ௜ܵே ா )௠
௜ୀଵ  (5) 

 
Because an unnamed entity indicates that there is no event, the sentence set S is removed as 

presented in Eq. (2). Furthermore, the sentence set SN E and the event set E are replaced with the 
sentence sequence ଵܵ௠ே	ா , and the event set sequence E1m, as shown in Eq. (3). Also, Eq. (4) generalizes 
multiple events by the use of the chain rule. Finally, Eq. (5) is simplified with the assumption that the 
event set of each sentence does not depend on other sentences. For better understanding, Table 1 
describes each term’s meaning. 

 							 ௔௥௚௠௔௫ܧ|	ܧ	)ܲ 	ܵோ) 														≈ ଵ,ଵ…݁ଵ,௡݁ݔܽ݉݃ݎܽ ܲ൫ ݁ଵ,ଵ…݁ଵ,௡ ห ܵோ ) (6) 
 														= ଵ,ଵ…݁ଵ,௡݁ݔܽ݉݃ݎܽ ෑෑܲ൫ ௝݁,௝ା௜ ห ܵோ, ݁௛௜௦௧௢௥௬	)௡ି௜

௝ୀ௜
௡ିଵ
௜ୀ଴  

(7) 

 
    

   = ଵ,ଵ…݁ଵ,௡݁ݔܽ݉݃ݎܽ ∏ ܲ൫ ௝݁,௝ ห ܵோ, ݁௛௜௦௧௢௥௬ )௡௝ୀଵ × ∏ ∏ ܲ൫ ௝݁,௝ା௜ ห ܵோ, ݁௛௜௦௧௢௥௬ )௡ି௜௝ୀଵ௡ିଵ௜ୀଵ            (8) 

In order to extract events from an arbitrary sentence by freeing oneself from the position in the 
sequence ଵܵ௠ே	ா, the left hand side of Eq. (6) is derived from Eq. (5). In particular, we assume that the 
event set E can be represented as the proposed event table, as described in both Eq. (6) and Fig. 4. 
Beginning with the entries that represent the trigger-argument relationship between two near words, 
Eq. (7) also generalizes multiple events by use of the chain rule. Furthermore, Eq. (8) describes that the 
event table generation problem can be divided into the trigger generation problem and the trigger-
argument relation generation problem. Considering the fast processing time and low memory 
requirement, the proposed model uses the best-first strategy [20,21] while searching through the 
sequence of entries. 
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Table 1. Description of terms 

Term Description

DocN E A named entity annotated document, which is analyzed by NLP tools . Sɸ A set of sentences without any named entity in the document DocN E Sோ A set of sentences with named entities in the document DocN E where Sோ ∩ Sɸ = ɸ 

ଵܵ௠ே	ா  ଵܵே	ா , ܵଶே ா, . . . , ܵ௠ே ா  : a sequence of the sentences in the set SNE where m indicates the number of 
the sentences. 

௜ܵே	ா  The i-th sentence in the sequence ଵܵ௠ே ா 

SN E A named entity annotated sentence, which is analyzed by NLP tools 

E A set of bio-molecular events that occurred in the document DocN E 

Ei A set of bio-molecular events that occurred in the sentence ௜ܵே ா  

E1m E1, E2, . . . , Em : a sequence of the event sets where E = E1 ∪ E2 ∪ ... ∪ Em and ∀i∀jEi ∩ Ej = ɸ 

E A set of bio-molecular events that occurred in the sentence SN E 

e1, 1. . . e1, n 
e1, 1, e2, 2, ..., en, n, e1, 2, e2, 3, ..., en-1, n, e1, 3, e2, 4, ..., en-2, n, ..., e1, n-1, e2, n, e1, n : a sequence of entries in the 
event table, as shown in Fig. 4 

ex , y 
An entry representing the trigger-argument relationship between the x-th word wx and the y-th 
word wy in the sentence SNE 

ehistory A sequence of the previously generated entries according to the chain rule 

w1n w1, w2, ..., wn : a sequence of words in the sentence SNE where n indicates the number of words 

wx 
The x-th word in the sentence SNE containing the word itself, its stem, its part-of-speech tag, its 
form such as capitalization, its named entity tag, and its dependency label 

wx-i The x− i-th word on the left context of the word wx in the sentence SNE 

wx+i The x + i-th word on the right context of the word wx in the sentence SNE 

whx The head word of the word wx in the dependency tree generated by a parser 

whhx The head word of the head word of the word wx in the dependency tree 

wdx The dependent word of the word wx in the dependency tree 

wddx The dependent word of the dependent word of the word wx in the dependency tree 

wx+1 y-1 The inner context between the word wx and the word wy in the sentence SNE 

INNERdep 

(wx,wy) 
The inner context between the word wx and the word wy in the dependency tree 
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Fig. 4.  Event table corresponding to the event set represented in Fig. 1. 

 
As shown in Fig. 4, the event table consists of entries containing the trigger or argument type. 

Specifically, entry ex,y represents the trigger-argument relationship between the x-th word wx and the y-
th word wy in the sentence. For example, the entry, e4,4 includes the argument type theme, which 
describes that the fourth word IL-2 will be used for the theme argument of an event. Also, the entry e5,5 

contains the type GE↑theme, which represents that the fifth word production will trigger a gene 
expression event, and then that this gene expression event will be used for the theme argument of 
another event. In addition, the entry e4,5 includes the type theme-GE, which describes that the word 
production triggers a complete gene expression event with the theme argument IL-2. Since the symbol 

‘↓’ indicates that one event is divided into more than two binary events, the entry e1,3 with cause-PR↓ 

describes that the entry will be combined with other entries, including the symbol ‘↓’. A more detailed 
explanation about the event table will be provided in Section 3.3. 

 
3.2 The Maximum Entropy-Based Bio-Molecular Event Extraction Model 

 
In order to solve the event extraction problem by effectively estimating each probabilistic term of Eq. 

(8), the proposed model utilizes the two words (such as wx and wy); the sentence contexts (such as wx−2, 

wx−1, wx+1, wx+2, wy−2, wy−1, wy+1, wy+2, and wx+1y-1); the dependency contexts (such as whhx, whx, wdx, wddx, 
whhy, why, wdy, wddy, and INNERdep(wx ,wy)); and the entry histories (such as ehistory), as represented in the 
equation below. 

 

													ܲ൫	݁௫,௬	ห	ܵோ, ݁௛௜௦௧௢௥௬ )  

																= ܲ	൫	݁௫,௬	ห ,ଵݓ ଶݓ … ,௡ݓ, ݁௛௜௦௧௢௥௬ )  
 
 

(9) 

																≈ ܲ ൮݁௫,௬ ተݓ௫, ,௫ିଶݓ ,௫ିଵݓ ,௫ାଵݓ ,௫ାଶݓ ,௛௛ೣ	ݓ ,ௗೣݓ,௛ೣݓ ,௬ݓ,ௗௗೣݓ ,௬ିଶݓ ,௬ିଵݓ ,௬ାଵݓ ,௬ାଶݓ ,௛௛೤	ݓ ,௛೤	ݓ ,ௗ೤	ݓ ,ௗௗ೤,݁௛௜௦௧௢௥௬	ݓ ,௫ାଵ௬ିଵݓ (௬ݓ,௫ݓ)ௗ௘௣ܴܧܰܰܫ ൲ (10) 
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							ܲ ۈۉ
ଵ,ଷ݁ۇ ተተ ,ଵ,ф,фݓ ,ଶݓ ,ଷݓ ,ଷݓ ,ଷݓ,ଶ,ф,фݓ ,ଵݓ ,ଶݓ ,ସݓ ,ହ,ф,фݓ ,ଶݓ ,ଵ,݁ଵ,ଵݓ ݁ଷ,ଷ, ,ଶݓ ଶݓ ۋی

ۊ
 (11) 

    

= ۈۉܲ
݁ݏݑܽܿۇ − ܴܲ ↓ ተተ ܴ݂ܽ − 1, ф, ф, ,ݕݐ݅ݒ݅ݐܿܽ ,ݏ݁ݐ݋݉݋ݎ݌ ,ݏ݁ݐ݋݉݋ݎ݌ ,ф,ݕݐ݅ݒ݅ݐܿܽ ф,ݏ݁ݐ݋݉݋ݎ݌, ܴ݂ܽ − 1, ,ݕݐ݅ݒ݅ݐܿܽ ܮܫ − 2, ,݊݋݅ݐܿݑ݀݋ݎ݌ ф, ф, ,ݕݐ݅ݒ݅ݐܿܽ ܴ݂ܽ − ,݁ݏݑܽܿ,1 ܴܲ, ,ݕݐ݅ݒ݅ݐܿܽ ݕݐ݅ݒ݅ݐܿܽ ۋی

ۊ
 (12) 

 
Both Eqs. (11) and (12) provide an example, coupled with a detailed explanation. The word wx 

includes all of the word itself, its stem, its part-of-speech tag, its form, its named entity tag, and its 
dependency label, in order to adequately describe the information of the word. The word Raf-1 is 
represented as Raf-1, Raf-1, noun, Capital: Number, which indicates that the word includes the capital 
letter R, the number “1,” protein, and noun. 

Also, the sentence context consists of the left and right hand side words of each word, and the inner 
words between the word wx and the word wy in the sentence. Specifically, the context word wi indicates 

nothing ɸ if 0 ≥i or i ≥n, where n indicates the number of all words in the sentence. Furthermore, the 

inner words wx+1y-1 takes nothing ɸ if x + 1 > y − 1. As shown in Eq. (11), the entry e1,3 can finally utilize 
w1,w2,w3,w4,w5 as the sentence context. 

Additionally, the dependency context is composed of the head and dependent words of each word, 
and the inner words between the word wx and the word wy in the dependency tree. As presented in the 

sentence context, wi indicates nothing ɸ if 0 ≥i, or i ≥n where i substitutes for each of hhx, hx, dx and ddx. 
As described in Eq. (11), the entry e1,3 can use w1,w2,w3 on the dependency path between the word w1 
and the word w3. 

Finally, the history context represents some useful entries selected from the event entries previously generated 
by the chain rule. For example, the entry e1,3 can utilize the immediate event entries e1,1 and e3,3.  

 																																			 ெܲா(ݔ|ݕ) = (ݔ)1ܼ ݌ݔ݁ ൭ෑߣ௜ ௜݂(ݔ, ௞(ݕ
௜ୀଵ ൱  (13) 

 
In order to practically calculate Eq. (10), the proposed model adopts the maximum entropy 

framework [22-25], which is one of the most powerful principles of statistical inference. In the 
maximum entropy framework, the conditional probability of predicting an outcome y given history x is 
defined as in Eq. (13). In the equation, fi(x, y) is the feature function, and λi is the weighting parameter 
of fi(x, y). Also, k is the number of features, and Z(x) is the normalization factor for y p(x|y)=1. The 
maximum entropy framework can select a unique joint probability distribution from the set of all joint 
probability distributions within a reasonable training time [23]. Also, the framework can use arbitrary 
feature functions in order to reflect the characteristics of the target domain [24]. The ability of freely 
choosing feature functions gives maximum entropy the obvious advantage over other machine learning 
methods. 
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3.3 Relationship between the Event Table and Events 
 
In this section, we first describe the representation of typical events in the event table. And then, we 

present how the event table can represent the sentences with a distinctive event structure. Every event 
consists of a trigger and its arguments, where the trigger always indicates a word, while the argument 
indicates either a word or other event, as shown in Fig. 5(a). Therefore, an event can be represented as a 
nonterminal node with a few pointers that indicate a trigger or its argument. Also, a trigger and its 
argument proteins can be represented as terminal nodes without a pointer. Moreover, each event type 
can be assigned into the event nonterminal node, while either a trigger type or its argument type can be 
assigned into the terminal node, as is described in Fig. 5(b). In order to reduce the complexity of solving 
an event extraction problem by focusing on only the event relationship between an event trigger and 
each of its arguments, the nonterminal is restricted to having two pointers as presented in Fig. 5(c). 
These terminal and nonterminal nodes can be assigned into the event table (such as the entry ex,x for a 
terminal node and the entry ex,y with ݔ ≠  for a nonterminal node). Ultimately, a terminal node for a ݕ
protein has an argument type, while a terminal node for a trigger has a trigger type. Also, the entry ex,y 
represents the trigger-argument relationship between the word wx and the word wy in the sentence. 

 
(a) 

 
(b) 

 

 
(c) (d) 

 
Fig. 5.  Process of converting the event set in Fig. 1 into an event table where only the first five words 
are included in order to compactly represent the events by eliminating numerous entries that are 
unrelated to the events. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. Event tables that represent the following sentences with distinctive event structures. (a) Differential 
expression and phosphorylation of CTCF, a c-myc transcriptional regulator, during differentiation of 
human myeloid cells. (b) This was accomplished by preventing the IFN-induced tyrosine 
phosphorylation of STAT1, a component of both IFNα- and IFNγ-induced DNA binding complexes. 
(c) Previously we reported that 3-deazaadenosine (DZA), a potent inhibitor and substrate for S 
adenosylhomocysteine hydrolase inhibits bacterial lipopolysaccharide-induced transcription of tumor 
necrosis factor-alpha and interleukin-1beta in mouse macrophage RAW 264.7 cells.
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(a) 

 

 
(b) 
 

 
(c) 

 
Fig. 7. Event tables that represent the following sentences with distinctive event structures. (a) In 
early to intermediate stages of erythroid differentiation we monitored the induction of CD36, Tal1, 
EKLF, NF-E2, and GATA-1 that preceeded expression of EpoR. (b) We show that in the human T 
lymphoblastic tumor cell line Molt4 c-myc mRNA and protein expression is down-regulated after 
exposure to dimethyl sulfoxide, to phorbol myristate acetate, or to the calcium ionophore A23187, 
which raises the intracellular calcium concentration. (c) Furthermore, we have demonstrated that 
both C/EBPbeta and GATA-1 can bind simultaneously to the C/EBP- and GATA-binding sites in 
the MBP promoter. 
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Conversely, three binary events, such as Fig. 5(c), are extracted from the given event table of Fig. 5(d). 
Then the desired events, such as Fig. 5(a), are obtained by combining two binary events with the symbol 

‘↓’ into a single event (such as indicated by the cause- PR-theme in Fig. 5(b)). Specifically, every trigger 
entry includes as much information as possible, because every trigger leads its event. For example, the 

trigger type GE↑theme at the event entry e5,5 in the event table Fig. 5(d) denotes that the trigger 
production will trigger a gene expression event, and that this gene expression event will be used for the 
theme argument of another event. 

Additionally, the proposed event table can cover some unusual examples. As shown in the multi-
word trigger example of Fig. 6(a), the normal trigger type is assigned to the last trigger word, while the 
trigger type with B (Begin) or I (Inside) is assigned to other trigger words (shown at the entry e9,9). This 
is because we assumed that the last word of a trigger leads the trigger. On the other hand, a protein has 
higher priority than a word in the event table, because a word (such as IFNgamma-induced in Fig. 6(b)) 
consists of a protein (such as IFNgamma), and a trigger (such as induced). The given correct protein 
consisting of more than two words (such as the entry e20,20 at Fig. 6(c)) is handled as one element, in 
order to reduce the event table size without any event extraction performance loss. 

As described in the entry e12,12 in Fig. 7(a) and the entry e13,16 in Fig. 7(b), the event table utilizes the 
symbol “|” to represent more than two triggers or event types [8]. In particular, the entry e13,13 with T |GE 
indicates that the trigger c-myc can become a transcription event trigger as well as a gene expression event 
trigger. Also, the entry e13,16 with T-theme and GE-theme indicates that there is both a transcription 
event and a gene expression event between the same trigger c-myc and the same theme argument 
protein. 

The event table allows for element sharing. The shared element can be a single trigger, such as Fig. 
6(c) or Fig. 7(a). Although the trigger induction of Fig. 7(a) is shared by four events, one leads to a gene 
expression, while the other three lead to positive regulation events. Though both (event1) and (event2) at 
Fig. 7(b) take the same trigger and the same argument, they can take the different event types, such as 
e13,16. Thus, part of an event can be shared between two events, such as Fig. 7(c) that (event1) and (event2) 
take the different theme argument with each other, while they take both the same trigger and the same 
theme argument.  

 
 

4. Experiments 

In order to examine the practical feasibility of our proposed bio-molecular event extraction model, 
we evaluated the coverage of the event table and the event extraction performance according to the 
feature combination. In order to fairly evaluate the proposed model, we utilized the training set, the test 
set, and the evaluation metrics such as precision, recall, and f-score provided by the BioNLP’09 shared 
task on event extraction [7]. 

 
4.1 Coverage Analysis 

 
For the purpose of examining the coverage of the proposed model, we have applied the correct 8,597 

events in the training set to Eqs. (1), (5), and (7), as shown in Table 2, where Num indicates the number 



 A Maximum Entropy-Based Bio-Molecular Event Extraction Model that Considers Event Generation 

 

260 | J Inf Process Syst, Vol.11, No.2, pp.248~265, June 2015 

of events belonging to each event type. Since Eq. (1) describes the definition of the bio-molecular event 
extraction problem, there is no coverage loss. Because Eq. (5) cannot extract every event placed in more 
than two sentences, the coverage of Eq. (5) decreases by 7.99%. Clearly, every trigger and its argument 
proteins in 529 (6.15%) events are located in different sentences, and 158 (1.84%) events take one of 
these 529 events as an argument. 

 
Table 2. Coverage per each equation in the training set 

Event type Num Eq. (1) Eq. (5) Eq. (7) 
Gene expression 1,738 100.00 94.59 94.19 

Transcription 576 100.00 94.79 94.44 
Protein catabolism 110 100.00 97.27 96.36 
Phosphorylation 165 100.00 95.76 95.15 

Localization 263 100.00 96.20 96.20 
Binding 880 100.00 94.55 93.41 

Regulation 960 100.00 89.48 89.27 
Positive regulation 2,843 100.00 91.52 90.75 
Negative regulation 1,062 100.00 85.59 84.56 

Total 8,597 100.00 92.01 91.36 
 
Moreover, the coverage of Eq. (7) decreases by an additional 0.65%, because the correct event table 

does not correspond to the set of the correct events, even though the event table can handle some 
unusual examples, as previously presented in Section 3.3. For example, the event table cannot include 
the trigger ‘expression’ in the word ‘overexpression’ without any protein, because the event table is 
based on a protein unit or a word unit. 

 
4.2 The Effectiveness of Feature Combination 

 
For the purpose of evaluating the bio-molecular event extraction performance according to the 

feature combination, we utilized some useful features selected from Eq. (10). We also evaluated the 
proposed model with these features using 10-fold cross validation on the training set. As described in 
Table 3, the word features indicate wx and wy, which are relative to the type of the entry ex,y in the event 
table. This feature includes the word itself, its stem, its part-of-speech tag, its form, its named entity tag, 
and its dependency label, as described in Table 1. Then, the sentence features describe the sentence 
context of these two words, while the dependency features represent their dependency context. The 
history features represent some useful entries previously generated by the chain rule. 

Table 4 presents a report on the performances of the proposed model on various feature 
combinations. By adding sentence features or dependency features to word features, the performances 
tend to increase the recall. Especially, the model adding the sentence features improves the recall by 
approximately 9% on Regulation events. These results show that the simple word features tend to 
determine that a given word is a non-trigger word. This is because a trigger word in a sentence 
frequently occurs as a non-trigger word in other sentences in the training set [8]. However, the model 
utilizing the sentence features or dependency features comparatively prefer a trigger to an ordinary 
word based on more precise context information. As the number of correct simple (and binding) events 
increases, the number of correct regulation events significantly increases by taking these correct simple 
(and binding) events as arguments. On the other hand, it is remarkable that the sentence features are 
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more useful than the dependency features, because the dependency features can be related to some 
errors generated by a dependency parser, while the sentence features are free from these errors. 

 
Table 3. Feature set used in experiments 

Category Practical features Description 
Word features wx, wy The x-th word and the y-th word in a sentence 

wxwy A concatenation of wx and wy 
Sentence features wx−2, wx−1 The (x−2)-th word and the (x−1)-th word in a sentence 

wx+1, wx+2 The (x+1)-th word and the (x+2) -th word in a sentence 
wx−1wx A concatenation of wx−1 and wx 

wx−2 wx-1 wx A concatenation of wx−2, wx−1 and wx 
wy−2, wy−1, wy+1, wy+2 

wy−1w 
wy−2wy−1wy 

The features obtained by replacing x to y in the ones above  

wx+1wx+2 ... wy−2wy−1 A concatenation of all words from wx+1 to wy−1 
Dependency features length of path The length of the path from wx to wy on the dependency tree 

History features ex,x, ey,y 
An entry corresponding to the word wx and an  
entry corresponding to the word wy 

 

Table 4. Performance according to various feature combinations (recall/precision/f-score) 
 Simple event Binding Regulations All 

word 70.95 / 38.94 / 50.29 34.66 / 18.28 / 23.94 25.89 / 13.19 / 17.48 41.64 / 21.81 / 28.63 

word+sen 73.20 / 42.02 / 53.39 39.45 / 18.77 / 25.44 34.67 / 13.98 / 19.92 47.84 / 21.78 / 29.93 

word+dep 72.12 / 38.23 / 49.97 38.56 / 17.49 / 24.07 31.55 / 13.17 / 18.58 45.64 / 20.67 / 28.45 

word+his 69.89 / 41.37 / 51.98 36.52 / 20.16 / 25.98 28.10 / 12.84 / 17.62 42.74 / 21.55 / 28.65 

word+sen+dep 72.85 / 44.47 / 55.23 39.89 / 20.50 / 27.08 33.73 / 15.49 / 21.23 47.25 / 23.92 / 31.76 

word+sen+his 71.83 / 48.49 / 57.89 38.83 / 23.57 / 29.34 34.65 / 14.94 / 20.88 47.31 / 24.00 / 31.85 

word+dep+his 69.77 / 42.55 / 52.87 36.35 / 20.81 / 26.47 28.70 / 14.64 / 19.39 43.02 / 23.49 / 30.39 

word+sen+dep+his 72.00 / 48.99 / 58.31 39.54 / 23.71 / 29.64 35.30 / 15.18 / 21.23 47.81 / 24.24 / 32.17 

 
As compared with the model using word features and sentence features, the model adding 

dependency features or history features improves the precision because of the following reasons since 
the distance between a trigger and its argument is much closer on the dependency tree than on the raw 
sentence [8], the model can actually focus on candidate events on the short dependency distance by 
utilizing the dependency features. In addition, the model can more accurately find the event type by 
using history features since the history features emphasize the trigger type and the argument type, both 
of which compose the event type. Finally, Table 4 shows that the model using all kinds of features 
performs best at a 32.17% f-score because more features generally lead to better performance. 

For comparison with previous bio-molecular event extraction models in the same test environment, 
we evaluated the proposed model on the official evaluation metrics provided by the BioNLP’09 shared 
task [7]. The proposed model achieved a 50.44% recall, 26.69% precision, and 34.91% f-score in the 
approximate recursive matching. Compared to the results [7] of other BioNLP’09 shared task 
participants, the proposed model ranks in the upper-middle range. 
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5. Conclusion 

In this paper, we proposed a maximum entropy-based model for bio-molecular event extraction. The 
proposed event extraction model has the desirable characteristics, which are described below. 

First, we can clearly describe the bio-molecular event extraction problem by mathematical modeling. 
We mathematically defined the problem to extract the bio-molecular events from a document. We also 
described a method of deriving the proposed model, which can utilize many useful features, such as 
sentence contexts and dependency contexts, from the definition. 

Second, we can claim that it is possible to replace the bio-molecular event extraction problem with 
the event table generation problem. In the proposed event table, each unary entry is assigned to each 
word in the sentence, and each binary entry represents the trigger-argument relationship between the 
given pair of words. The event table can cover some unusual events, such as the multi-word trigger or 
element sharing, as described in Figs. 6 and 7. Our experimental results showed that the coverage of 
bio-molecular event extraction decreases only by 0.65%. This is because the correct event table does not 
correspond to the set of the correct events. 

Third, we can simplify the process of solving a bio-molecular event extraction problem because the 
proposed model focuses only on the individual binary relationship between an event trigger and each of 
its arguments. Specifically, we replaced the event extraction problem with the event table generation 
problem, and then we decomposed the event table generation problem into the small manageable 
problems of filling each entry into the event table. 

Fourth, we verified the useful feature combination by analyzing the event extraction power of each 
feature combination. We have found that more features mainly tend to significantly increasing the 
precision of the bio-molecular event extraction problem, even though more features slightly decreased 
the recall in some cases. Furthermore, it is remarkable that the sentence features are more useful than 
the dependency features, since the dependency features can be related to some errors generated by a 
dependency parser, while the sentence features are free from these errors. 

Unlike previous approaches that have intuitively designed a pipeline consisting of a trigger detection 
step and an argument recognition step, the proposed model combines these two steps by using the 
event table. Also, the model is designed based on the mathematical derivation process rather than on 
intuition. Furthermore, the proposed model can describe why these two steps can utilize the same 
machine learning techniques and similar features. 

For future research, we would like to study a method of selecting more appropriate features for the 
maximum entropy model, in order to extract the events more precisely. In addition, we aim at applying 
an anaphora resolution method to the bio-molecular event extraction problem for covering some events 
in which a trigger and arguments are located in different sentences. 
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