
 

www.kips.or.kr                                                                                                Copyright© 2015 KIPS 

       
 
         

 
 
 

A Column-Aware Index Management Using Flash  
Memory for Read-Intensive Databases  

 
Si-Woo Byun* and Seok-Woo Jang* 

 
 
Abstract 
Most traditional database systems exploit a record-oriented model where the attributes of a record are placed 
contiguously in a hard disk to achieve high performance writes. However, for read-mostly data warehouse 
systems, the column-oriented database has become a proper model because of its superior read performance. 
Today, flash memory is largely recognized as the preferred storage media for high-speed database systems. In 
this paper, we introduce a column-oriented database model based on flash memory and then propose a new 
column-aware flash indexing scheme for the high-speed column-oriented data warehouse systems. Our index 
management scheme, which uses an enhanced B+-Tree, achieves superior search performance by indexing an 
embedded segment and packing an unused space in internal and leaf nodes. Based on the performance results 
of two test databases, we concluded that the column-aware flash index management outperforms the 
traditional scheme in the respect of the mixed operation throughput and its response time. 
 
Keywords 
Column-Aware Index Management, Column-Oriented Databases, Flash Memory Storage, Game Database, 
Network Database 
 

 
1. Introduction 

Traditional database management systems are based on record-oriented storage systems, where the 
attributes of a record are placed contiguously in storage. With this row store architecture, a single disk 
write suffices to push all of the fields of a single record out to the disk. Hence, high performance writes 
are achieved and these write-optimized systems are especially effective on online transaction processing 
(OLTP) style applications [1]. 

In contrast, systems oriented toward the ad-hoc querying of large amounts of data should be read-
optimized. Data warehouses represent one well-known class of read-optimized systems, in which a bulk 
load of new data is periodically performed, followed by a relatively long period of ad-hoc queries. Other 
read-mostly applications include customer relationship management (CRM) systems, electronic library 
card catalogs, and other ad-hoc inquiry systems. In such environments, a column store architecture, in 
which the values for each single column are stored contiguously, should be more efficient. This 
efficiency has been demonstrated in the data warehouse marketplace by products like Sybase IQ [2]. 

With column store architecture, a DBMS only needs to read the values of columns required for 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received March 14, first revision August 29, 2014; accepted October 3, 2014; onlinefirst August 10, 2015. 
Corresponding Author: Si-Woo Byun (swbyun@anyang.ac.kr) 
* Dept. of Digital Media, Anyang University, Anyang 430-714, Korea ({swbyun, swjang}@anyang.ac.kr) 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 ISSN 1976-913X (Print) 
http://dx.doi.org/10.3745/JIPS.04.0017 ISSN 2092-805X (Electronic) 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

390 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

processing a given query, and it can avoid bringing in memory irrelevant attributes. In data warehouse 
environments where typical queries involve aggregates performed over large numbers of data items, a 
column store has a sizeable performance advantage [1,3]. 

Column-oriented databases, as well as general record-oriented databases, were designed to store data 
items in hard disks in the past. However, recent flash memory storage, called solid state drive (SSD), has 
become a critical component in building high-performance servers because of its superior I/O 
performance, being non-volatile, shock-resistant, and having a power-economic nature. Its storage 
density has been improved to a level at which it can be used not only as a main storage for portable 
computers, but also as a mass storage for large-volume database systems [4]. The contributions of this 
paper are as follows: 

• We investigate the characteristics of the column-oriented database and flash memory storage for 
read-intensive data warehouse servers. 

• We propose a new index management scheme, called column-aware flash memory-based index (CaF 
index), to improve the performance of search operations for a column-oriented database system 
using flash memory storage. 

• Finally, we evaluate the performance of our scheme in terms of the search and update operation 
throughput and the average response time. 

 
 

2. Related Work 

2.1 Characteristics of Flash Memory  
 
Similar to a lot of storage media, flash memories are treated as ordinary block-oriented storage media, 

and file systems are built over flash memories. A flash memory consists of many blocks, and each page 
consists of a fixed number of pages. In Fig. 1, the size of the page and the block size of a flash memory 
are 4 kB and 256 KB, respectively.  

 

 
Fig. 1. Flash memory architecture. 

 
Because flash memory is write-once, we did not overwrite data with updates. Instead, the data was 

written in a free space, and the old versions were invalidated. Initially, all blocks on the flash memory 
are considered free. When a piece of data on a block is modified, the new version must be written 



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 391 

somewhere on an available block. The blocks storing the old versions are considered dead, while the 
block storing the newest version is considered to be alive. After a certain period of time, the number of 
free blocks is reduced. As a result, the system must reclaim free blocks for further writes. The slow erase 
operation contributes to degrading the system's performance [5]. 

Flash memory has two drawbacks. First, the blocks of flash memory need to be erased before they can 
be rewritten. This drawback is caused by the fact that flash memory technology allows the toggling of 
individual bits for writes in only one way. The erase operation, which needs much more time than the 
read or write operations, resets the memory cells with either all ones or all zeros. The second drawback 
is that the number of rewrite operations allowed for each memory block is limited to fewer than 
1,000,000. This limit requires the flash management system to wear down all memory blocks, as evenly 
as possible [6]. 

Note that flash memory is about two times faster than a hard disk with regards to the update 
operation, although flash memory has the characteristics of slow erase and writes. Moreover, flash 
memory is about four times faster than a hard disk with regards to the read operation. In this respect, 
we claim that the combination of flash memory storage and column-oriented database could establish a 
new high-performance database platform suited for large-volume data access, such as a read-intensive 
data warehouse.  
 

2.2 Characteristics of Column-Oriented Databases 
 
There are limits to the performance that row-oriented systems can deliver when tasked with a large 

number of simultaneous, diverse queries since they should read a lot of irrelevant attributes. In contrast, 
with column-oriented systems, only the columns used in a query need to be fetched from storage. In a 
column-oriented database, each column is stored contiguously on a separate location on disk, typically 
using large disk pages or large read units to amortize disk head seeks when scanning multiple columns 
on hard drives. To improve read efficiency, columnar values are typically densely packed, foregoing the 
explicit storage of record IDs, and using lightweight compression schemes [1,4]. 

Especially, a column-oriented database facilitates vast improvements in compression, which can 
result in an additional reduction in storage access while maintaining high performance. One example, 
typically employed where a column contains often-repeating values, involves tokenizing the commonly 
used data values and mapping those values to tokens that are stored for each row in the column. For 
example, instead of maintaining copies of city name values in address records, each city name, such as 
‘Los Angeles,’ can be mapped to an integer value such as 1,397, which requires 2-bytes to store, rather 
than 11-bytes. The resulting compression is five times in this example. As another example, run length 
encoding is a technique that represents runs of data using counts, and this can be used to reduce the 
space needs for columns that maintain a limited set of values, such as flags or codes [3]. 

As compared to a simple row-oriented database, the disadvantage of column-oriented database is 
tuple construction overhead. This is because a column-oriented database should reconstruct partial or 
entire tuples (records) out of different columns in disk for most database access standards (e.g., ODBC 
and JDBC). However, this overhead can be mitigated by some techniques, such as in-memory buffering, 
tuple moving, and partition-merging. Furthermore, in the respect of computational efficiency of 
pipelined query or vectorized query processing, a column-oriented database is much more suitable to 
exploit the features of modern processors, such as pipelined CPUs, CPU branch prediction, CPU cache 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

392 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

efficiency, and SIMD instructions [1]. 
For example, the MonetDB/X100 systems that pioneered the design of modern column-oriented 

database systems and vectorized query execution show that column-oriented database designs can 
dramatically outperform commercial and open source databases on benchmarks like TPC-H due to 
superior CPU and cache performance, in addition to reduced data I/O [7]. 
 

2.3 Characteristics of Traditional Index Management Schemes 
 
Previous approaches to dealing with indexing techniques that appear in [6] can be divided into two 

categories: hard disk-based and main memory-based approaches. The hard disk-based approach 
achieves high index performance by reducing expensive disk I/O and disk space. The cost of slow disk 
access is much more expensive than that of fast CPU access in the course of an index search. Therefore, 
in order to optimize disk access, a disk-based system sets the index node size to the block size and 
includes as many entries as possible in a node [8]. 

Two well-known index structures are B-Tree for a general index and R-Tree for a spatial index [9]. R-
Tree is usually implemented as a disk-based index structure for accessing a large collection of spatial 
data. Insertion, deletion, and re-balancing often cause many sectors to be read and written back to the 
same locations. For disk storage systems, these operations are considered efficient, and R-Tree nodes 
are usually grouped in contiguous sectors on a disk for further efficiency considerations [10].  

The memory-based index aims to reduce CPU execution time and memory space since there is no 
disk I/O. In general, the memory-based indexing system outperforms the disk-based system in terms of 
index operation performance. However, the memory-based systems could suffer from unreliable data 
access due to system faults, such as a power failure. The well-known index structure for a memory-
based system is T-Tree [11]. T-Tree has the characteristics of the AVL-Tree, which has O(logN) tree 
traverse. T-Tree also has the characteristics of B-Tree, which has many entries in a node for space-
efficiency. T-Tree is considered a good structure for a memory-based index in terms of index operation 
performance and space efficiency [12]. However, in [11], the performance of the B-Tree could 
outperform that of the T-Tree due to the concurrency control overhead. Thus, for performance reasons, 
a memory-based system generally uses enhanced B-Trees as well as T-Trees. 

In disk-based systems, each node block may contain a large number of keys. The number of subtrees 
in each node, then, may also be large. The B-Tree is designed to branch out in a large number of 
directions and to contain a lot of keys in each node so that the height of the tree is relatively small. This 
means that only a small number of nodes must be read from the disk to retrieve an item. The goal is to 
have quick access to the data, and this means reading a very small number of records [13]. That is, the 
depth of the tree is very important because the number of node accesses refers to the number of disk 
I/O in the course of the tree traverse to search for or insert a node. Thus, the disk-based system 
minimizes the disk I/O cost by using a shallow and broad tree index. The memory-based system, on the 
other hand, does not prefer a shallow and broad tree index. This is because the depth of the tree or the 
size of the tree node can be adjusted to improve index performance, and the node access cost is very low 
in a fast RAM. 

Unfortunately, index design and the implementation of a disk-based or memory-based system could 
not be applied directly to a flash memory-based due to the unique characteristics of flash memory. First, 
the fast read operation should be exploited more frequently and more efficiently than the slow write 



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 393 

and erase operations, especially in search-intensive systems such as read-mostly data warehouses. 
Second, for the longer lifetime of the flash memory, the number of write operations should be 
minimized in the index node update processes [14]. For these reasons, any direct application of the 
traditional index implementation to flash memory could result in severe performance degradation, and 
could reduce its reliability. However, if these special features are handled efficiently, the flash memory is 
considered as the most affordable storage media for read-intensive applications, especially for column-
oriented databases. 
 
 

3. Column-Aware Index Management Using Flash Memory 

In order to devise a new index management scheme for a column-oriented database using flash 
memory, we focused on a B-Tree-based index, especially the B+-Tree, which is considered to be the 
most well-known and efficient indexing scheme for both disk-based and memory-based database 
systems. The B+-Tree is an enhanced index of the B-Tree and is considered to be more suitable than B-
Tree for flash memory. This is because B+-Tree stores index entries in internal nodes, and data entries 
in leaf nodes. On the other hand, B-Tree stores both index and data entries in internal nodes. Thus, B+-
Tree is able to search more quickly with less I/O than B-Tree. In this respect, we proposed a new index 
management structure called the CaF index, which is based on the B+-Tree and is able to efficiently 
handle the characteristics of flash memories and column-oriented database. The main idea behind the 
CaF index is based on unused space packing and the embedded segment index. 
 

3.1 The Idea of the Column-Aware Flash Index Management 
 
The B+-Tree is a well-known index tree designed for efficient index operations, such as insertion, 

deletion, and search. The idea behind B+-Trees is that internal nodes can have a variable number of 
child nodes within some pre-defined range. As data is inserted or removed from the data structure, the 
number of child nodes varies within a node, and so the internal nodes are coalesced or split so as to 
maintain the designed range. Because a range of child nodes is permitted, B+-Trees do not need re-
balancing as frequently as other self-balancing binary search trees, but may waste some space since the 
nodes are not entirely full. The lower and upper bounds on the number of child nodes are typically 
fixed for a particular implementation [15]. The B+-Tree is kept balanced by requiring that all leaf nodes 
have the same depth. This depth will increase slowly as elements are added to the tree, but an increase 
in the overall depth is infrequent, resulting in all leaf nodes being one more hop further removed from 
the root. By maximizing the number of child nodes within each internal node, the height of the tree 
decreases, balancing occurs less often, and efficiency increases. In [9], the simulation shows that the 
average fill factor of about 70% is the most optimal value in a B+-Tree node. That is, saving too many 
entries in a node could lead to performance degradation due to frequent insert/delete operations caused 
by tree rebalancing. 

However, from the point of flash memory, 30% of the unused area is a waste of space and time. This 
is because flash memory is write-once so that it cannot overwrite in the same block. Instead, updated 
data is written in a new free block. In this respect, we exploited unused space packing so that the 
column-oriented database storage removes unnecessary space overhead and a meaningless writing time 
of blank data. As illustrated in Figs. 2 and 3, the unused area of the B+-Tree node could be saved by up 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

394 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

to 30% in the CaF index scheme. 
Unlike the general row-oriented databases, column-oriented databases exploit data compression to 

save flash memory and to accelerate data access. Since the column-oriented database handles mostly 
read-intensive data warehouses, the column-oriented database should manage big data access and a 
frequent uncompression process. Thus, the longer the data is, the more time it consumes in the 
uncompression process. 

In order to reduce this uncompression overhead and achieve fast data access, the CaF index exploits 
embedded segment indexing in the leaf node, as illustrated in Fig. 2. Unlike the general index scheme, 
such as B-Tree, embedded segment indexing splits large data into small data units called an embedded 
segment. The compression and uncompression overhead of the small segment is naturally lessened as 
compared to original large data. The key and the segment offset of each small segment are kept in the 
header area of the embedded segment index in the leaf node.  

Fig. 2. Leaf node structure of column-aware flash memory-based index (CaF index). H=header of 
original index, h1=header of Embedded Segment1, d1=compressed data of Embedded Segment1. 

 
Since the CaF index can jump to the start position of the target segment and can uncompress only the 

small segment, which contains the key, the data search performance is significantly improved as 
compared to the case of entirely uncompressing one large data. 

We used a real-time data compression library called LZO [16], for the node compression in a sense 
that LZO is not only simple but also easy for handling source codes and varying the compression level 
to control the compression ratio and speed.  



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 395 

 
Legend-  

Fig. 3. Internal node structure of column-aware flash memory-based index (CaF index). X=search key 
in subtree, Ki=ith key, Pi=ith pointer. 

 
In Fig. 2, the original leaf node consists of a long header and large data compressed by the LZO 

algorithm. We split this original node into multiple small segment arrays, which consist of compression 
header i, denoted by hi, and compressed data, denoted by di. Each hi consists of several pieces of format 
information, such as the LZO signature, current compression version, last modification time, crc-32 
checksum, and the compressed byte size of input data. Each di contains output data compressed by the 
LZO algorithm. Note that the output data size is much smaller than the data size of the original node. 
This embedded segmentation contributes to reducing the leaf node access time by exploiting the small 
segment index.  

In order to improve the index operation performance of the B-Tree for flash memory storage, some 
index structures, such as the FD-Tree [17] and BFTL [18], were proposed. The FD-Tree was designed 
with the logarithmic method and fractional cascading techniques. With the logarithmic method, an FD-
Tree consists of the head tree - a small B+-Tree on the top, and a few levels of sorted runs of increasing 
sizes at the bottom (Fig. 4). With the fractional cascading technique, FD-Tree store pointers, called 
fences, in lower level runs to speed up the search. FD-Tree design is mainly write-optimized for the 
flash memory. In particular, an index search will potentially go through more levels or visit more nodes, 
but random writes are limited to a small head tree.  

 

Fig. 4. The overview of the example FD-Tree.  
Although both the FD-Tree and our scheme improve index operation performances, the focus of our 

scheme is different from that of the FD-Tree, which is optimized to reduce the number of write 
operations in the B-Tree. The first difference is that our scheme is chiefly a read-optimized method for 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

396 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

read-intensive data warehouses. The second difference is that our major modification is on leaf nodes, 
while the FD-Tree scheme modified root and internal nodes to enhance read performance.  

BFTL could efficiently handle fine-grained updates caused by B-Tree index access and reduce the 
number of redundant write operations in flash memory. BFTL consists of a small reservation buffer and 
a node translation table. When the applications insert or delete records, the newly generated records 
would be temporarily held by the reservation buffer to reduce redundant writes. Since the reservation 
buffer only holds an adequate amount of records, the index unit of the records should be flushed in a 
timely manner to the flash memory. The node translation table maintains the logical sector addresses of 
the index units of the B-Tree node so that the collection of the index units could be more efficient by 
smartly packing them into a few sectors. Although BFTL achieves an enhanced performance in terms of 
write operations, it requires an additional hardware implementation of the reservation buffer and the 
node translation table. Furthermore, the search overhead can increase with frequent access to the 
reservation buffer and the node translation table. 

The focus of our scheme is different from that of BFTL. That is, BFTL aims to minimize redundant 
writes by using an additional hardware buffer in the B-Tree, while our scheme aims to enhance read 
operations by index segmentation and unused space packing techniques. Moreover, in the respect of 
write operation, our scheme exploits leaf node compression, while BFTL exploits the delayed writing 
technique. Therefore, the different features of our scheme and BFTL can be merged to maximize 
performance synergy in flash memory storage systems. 

Our CaF index structure and the proposed algorithm are also applicable to row-oriented databases. 
Moreover, flash memory could double row-oriented database performance, especially in read-intensive 
data warehouse areas. However, our scheme is optimized for column-oriented databases rather than 
row-oriented databases. This is because column-oriented databases are considerably compressed and 
have column-wise locality since column data are serially stored in the same field.  

Note that the row-oriented database has a weaker locality than the column-oriented database and 
thus should access many more pages since a row-oriented database is not compressed as much as a 
column-oriented database. The CaF index scheme exploits this column-wise locality so that database 
system enhances I/O performance and space efficiency in expensive flash storages. Moreover, if the CaF 
index scheme selects a different compression algorithm in each column characteristic, such as the 
number, Boolean, and string, column-oriented database performance would be upgraded.  
 

3.2 Algorithms for CaF Index Operation 
 
The search operation of the CaF index scheme is based on well-known B+-Tree management 

algorithms in [9], but is modified to include an embedded segment uncompression idea. The detailed 
procedure of handling index operations can be shown in a pseudo-code form as Algorithm 3.1. 
 
Algorithm 3.1 Search and Update Operation of CaF Index Scheme 

ColumnData *CaF-Operation (int key, type operation, optional newdata) { 
R ← node containing root of tree; 
N ← FM-Read(R);    // read node R in Flash Memory  
while ( Type(N) != LEAF_NODE )  {   // N is not a leaf node of the tree. 

q ← number of tree pointers in node N  



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 397 

if ( key ≤ N.K1 )    // N.Ki refers to the ith search field value in node N. 
N ←N.P1   // N.Pi refers to the ith tree pointer in node N.  

    // N is the first child node. 
else if ( key > N.Kq-1 )  

N ←N.Pq    // N is the last child node. 
else { 

Search node N for an entry i such that N.Ki-1 < key ≤ N.Ki ; 
N ←N.Pi  

} 
N ←FM-Read(N);    // read internal node N  

} // end of while loop 
 
Create a temp node T in RAM for fast uncompression; 
S ← FM_Read( N + N.SegmentOffset[N.Ki] )    // jump uncompression pointer to Segment S. 
T ← Lzo_Uncompress_Segment(S);  // uncompress only segment S 
if  (operation==SEARCH) { 

Search Data Di such that key = Ki in T;  // search target data Di. 
Return Di  // return data Di 

} else if (operation==UPDATE) { 
Search Data Di such that key = Ki in T;  // search target data Di. 
Update data Di to new data  in T; 
S ← Lzo_Compress_Segment(T ); 
FM_Write(S ); 

} else if (operation==DELETE) { 
Search Data Di such that key = Ki in T;  // search target data Di. 
Remove data Di and its pointer in T; 
S ← Lzo_Compress_Segment(T ); 
FM_Write(S ); 
Merge if the number of leaf nodes is less than the minimum; rebalance internal nodes;  

} else if (operation==INSERT) { 
Find data location such that key = Ki in T;  
insert data in the location of T; 
S ← Lzo_Compress_Segment(T ); 
FM_Write(S ); 
Split if the leaf node is full; rebalance internal nodes;  

} 
Return OP_SUCCESS; 

} // End of CaF-Index Operation 
 
Our CaF tree, as well as the B+-Tree, consists of a root, internal nodes, and leaf nodes. The search 

operation to find a key in the CaF tree always follows one path from the root node, denoted by R, to a 
leaf node. This search algorithm can be illustrated as explained below. 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

398 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

Example 3.1 (Search Procedure of the CaF Index Scheme):  
Consider that we are looking for corresponding data to key value, 37, in the CaF tree (Fig. 5). Suppose 
that there are two key values, {30, 50}, in the internal node, denoted by node-a, for simplicity. 

Fig. 5. Flow of search operation. 
 
At the node-a, the CaF index search algorithm figures out which internal pointer it should follow. 

Since with the search key, x=37 and 30< x ≤50, it should follow node-c. It then selects the second 
pointer, p2, in the leaf node-c and finds the corresponding data space. 

It then creates a temp space T in RAM for fast uncompression, after which it calculates a 
corresponding segment distance, denoted by SegmentOffset for the key, 37. By accessing the embedded 
segment index, denoted by seg[], the search operation can avoid the uncompression overhead of 
Segment1 and can move the input pointer to Segment2. It then only reads the Segment2 area in flash 
memory by invoking FM-Read() and uncompresses only Segment2 into T by invoking the 
Lzo_Uncompress_Segment(). And then, it returns the target data, Di, such that key=37, in T. 

 
 

4. Results 

We compared the performance of three types of the CaF tree to the well-known index, B+-Tree. The 
average fill factor of the B+-Tree was fixed to 70%, which is a basic value for the best performance [9]. 
We denote these basic B+-Trees as BT_BAS, shortly in our test. As mentioned above, our CaF index 
scheme exploits empty space packing in internal and leaf nodes for space-efficiency. We denote this 
type of CaF tree as CT_PACK. Our CaF index scheme also exploits embedded segment compression in 
leaf nodes for search-efficiency. We denote this type of CaF tree as CT_EMB. Finally, we also denote the 
type of CaF tree, which exploits both CT_EMB and CT_PACK for the best performance as CT_EaP. 



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 399 

4.1 Test Environment Setup 
 
Our system was programmed using Microsoft Visual C++ and the CSIM library [19] for workload 

generation and performance analysis. Our actual experiments were carried out on an I7-QUAD 2.93 
GHz server with 120 GB flash memory SSD running under a 64-bit Microsoft Windows 7 operating 
system. We also obtained two types of real databases, which are frequently used in a game portal and a 
network company, and expanded them to ten million records for a large database organization. 

The game database in Table 1, denoted by TestSet1, is used to analyze search and update queries 
under a normal workload condition. The network database in Table 2, denoted by TestSet2, is used to 
analyze a mixed query, which consists of 75% of the search operation and 25% of the update 
operation, under a high workload condition. The column characteristics of the two databases are as 
listed below.  
Table 1. Column characteristics of game play database (TestSet1) 

Column name ItemUseNo UserNo GameCode GameCheat UseDate ... 
Compression time for 10,000 

records (ms) 30 22 25 8 48 

Column data size of 10,000 
records (byte) 

2,379 659 1,905 192 13,597 

Compression ratio 4 1 2 0.3 8 
Sample value 1 25 12 202956801 TRUE 2012-2-16 17:16 
Sample value 2 93 21 202956801 TRUE 2011-2-19 19:43  
Table 2. Column characteristics of network flow database (TestSet2) 

Column name FST_FIN_TM SVR_RTT_TM CLI_RTT_TM SESS_START_TM... 
Compression time for 10,000 

records (ms) 40 36 30 82 

Column data size of 10,000 
records (byte) 

1,782 1,562 699 32,200 

Compression ratio 2 2 1 10 

Sample value 1 183.168 16.182 0.072 2013-02-01 
10:53:05.000000 

Sample value 2 183.192 16.179 0.076 
2013-02-02 

17:15:43.000000  
As mentioned above, we used the LZO algorithm for column data compression, and our compression 

test showed that the compressed data ratio is less than 8% in TestSet1, less than 10% in TestSet2, 
respectively. Due to the high data locality feature of column-oriented databases, the compression result 
is very positive, especially for text, Boolean, or code data compression, such as GameCheat Flag and 
GameCode. The compressed set size of 10,000 records is less than 14 kB in TestSet1 and less than 33 kB 
in TestSet2, respectively. The CSIM workload generator randomly selects the columns associated with 
queries. 

The primary performance metrics used in this study are the column operation throughput rate and 
the response time. The throughput rate is defined as the number of column searches or update 
operations that are successfully completed per second, and the response time is defined as the time that 
elapses between the submission and the completion of the column operation. 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

400 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

4.2 Test Results and Their Interpretation 
 
We then analyzed the results of the experiments performed for the four schemes of BT_BAS, 

CT_PACK, CT_EMB, and CT_EaP. Our experiments were used to investigate the effect of the column 
search workload level on the performance of four schemes in which the num_CSRs and the number of 
column search requests per second varies. 

The overall search throughput as a function of num_CSRs is presented in Fig. 6, and its 
corresponding average response time is depicted in Fig. 7. In Fig. 6, the x-axis means the input 
workload, which is the number of submitted search operations per second. Thus, varying the number of 
issued search operations means the variation of the database system workload. The y-axis means the 
output performance, which is the number of completed search operations per second. In Fig. 7, the 
average response time gradually increases with the workload level. This increase is mainly due to the 
increment of the search access contention that follows the increment of the workload level. In this 
experiment, we observed that CT_EaP, followed by CT_EMB, CT_PACK, and BT_BAS, exhibits the 
highest throughput. 

 

 
Fig. 6. Search-operation throughput.             Fig. 7. Search-operation response time.  

 
Fig. 8. Search-operation queue-length. 

 

In Fig. 6, we show that the performance of each scheme levels off or begins to be degraded beyond the 
num_CSRs of 500 to 700. Although the num_CSRs has been increased beyond that range, the number 



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 401 

of active search operations that are currently being executed in the database system appears to decrease 
slightly. This fact implies that adding more search operations beyond that range simply contributes to 
increasing the search I/O contention, while not necessarily incurring an enhanced level of throughput. 
From this observation, we can claim that the performances of the column-oriented database storages 
are mainly limited by the factor of I/O contentions, such as uncompression and read operations, caused 
by flash memory search procedures. 

In Fig. 7, we show that the performance of CT_EaP begins to decrease as the num_CSRs increases 
beyond 700, although CT_EaP achieves higher performance than BT_BAS by reducing the congested 
search operations of flash memory using embedded segment indexing and empty space packing. This 
decrease implies that CT_EaP also experiences the negative effect of search contention under the high 
workload environment. CT_EMB shows slightly higher performance than CT_PACK in a high 
workload environment. This is because CT_EMB effectively reduces the degree of the uncompression 
workload by  using the embedded segment indexing. 

In Fig. 7, we observed that the response time of each scheme increases gradually as the workload level 
increases. At the overall workload level, the response curve of CT_EaP is superior to that of BT_BAS. 
With respect to the search operation throughput, the performance gain of CT_EaP relative to BT_BAS 
reaches about 17%. With respect to the search response time, the gain of CT_EaP relative to BT_BAS 
reaches about 34%. 

This performance difference implies that a large portion of the performance gain in CT_EaP over 
BT_BAS comes from the implementation of column-aware flash indexing to minimize search I/O 
overhead. However, BT_BAS scheme meaninglessly fetches the empty area of 30% of the flash memory 
space and this leads to requiring more I/O access to find the key and data in the B+-Tree. This is because 
the B+-Tree maintains the average fill factor of 70%, which was designed to reduce the number of times 
frequent tree rebalancing must be carried out in a slow hard disk environment.  

On the contrary, in a fast flash memory environment, this fill factor feature of the B+-Tree generates 
more I/O accesses and a bigger uncompression workload. Eventually, this feature contributes to the 
severe performance degradation of BT_BAS due to the long I/O delay of flash memory and unnecessary 
uncompression overhead of the CPU, especially in a high workload condition. Compared to BT_BAS, 
CT_EaP successfully overcomes the negative effect of this overhead and enhances search speed by 
packing 30% of the useless area and inserting more internal nodes in the area under the same condition. 

This assertion can be confirmed by comparing the number of waiting operations, queue-lengths, in 
Fig. 8. Actually, the sudden congestion of search operations begins at a queue-length of about 600 in 
our experiment. However, the number of waiting operations for column searches is always much lower 
using CT_EaP than using the other schemes. This is due to the positive effect of exploiting empty space 
packing in CT_EaP. Furthermore, CT_EaP exploits the embedded segment indexing to lessen this 
uncompression overhead and achieve fast data access in the leaf node. CT_EaP only uncompresses the 
small segment that contains the key rather than one piece of large data entirely. As a result, CT_EaP 
shows a 43% lower Queue-Length than BT_BAS throughout the whole range of num_CSRs. 

We also investigate the performance differences of four schemes in terms of column update 
operations. The update operation throughput as a function of num_CURs is depicted in Fig. 9. Its 
corresponding average response time is depicted in Fig. 10. In Fig. 9, we show that the performance of 
each scheme levels off or begins to be degraded beyond the num_CURs of 100 to 200. The results 
indicate that CT_PACK is capable of providing superior performance. This performance gain is mainly 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

402 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

because CT_PACK used empty space packing for best space-efficiency, and this leads CT_PACK to 
reduce the number of write operations by shortening the depth of the index tree nodes.  

      
Fig. 9. Update-operation throughput.                   Fig. 10. Update-operation response time.  

As compared to column search operations, column update operations are write-intensive in the sense 
that update operations should perform the slow writes and erase operations in flash memory. In this 
write-intensive situation, we observed that CT_EaP showed a remarkable performance difference 
compared to the BT_BAS. The performance gain of CT_PACK and CT_EaP relative to BT_BAS 
reaches 20.2% and 30.7%, respectively, throughout the whole range of num_CURs. This fact can be 
confirmed by the results in Fig. 10. Actually, the response time of CT_EaP is 21% lower than BT_BAS at 
the overall range of num_CURs. Moreover, CT_EaP requires small volume of flash memory writes for 
the column update operation, as compared to BT_BAS.  

We then analyzed the results of the experiments under the high workload condition, TestSet2. As 
mentioned above, TestSet2 used the mixed query, which consists of 75% of search operations and 25% 
of update operations. The throughput of mixed operations as a function of num_MORs and the number 
of mixed operation requests per second is presented in Fig. 11. Its corresponding average response time 
is depicted in Fig. 12.   

   
Fig. 11. Mixed-operation throughput.             Fig. 12. Mixed-operation response time.  

As the num_MORs increases, in Fig. 11, the overall throughputs of the four schemes in TestSet2, are 
gradually degraded as in TestSet1. This is mainly because more mixed operations TestSet2 induces more 



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 403 

read contention and much higher compression delay, which is associated with update operations. 
Furthermore, in the respect of flash memory, update operations consume a much longer holding time 
than search operations, since write operations require additional overheads for erasing flash blocks. 

These data contentions and compression delays, in turn, lead to longer response times, as the 
num_MORs increases. This can be confirmed by the results in Fig. 12. That is, the average response 
time of all of the four schemes gradually increases in TestSet2. However, in the overall range, the 
response time curve of CT_EaP is much lower than that of BT_BAS. Note that this superior result is 
mainly because CT_EaP enhances update speed by packing empty space for space-efficiency and 
enhances search speed by embedded segment indexing under the heavy workload condition of TestSet2. 

With respect to the response time of a mixed operation, the gain of CT_PACK relative to BT_BAS 
reaches about 40.7% and that of CT_EaP reaches about 52.9%. In TestSet2, we observed that CT_EaP, 
followed by CT_PACK, CT_EMB, and BT_BAS, exhibits the highest throughput. With respect to the 
throughput of a mixed operation, the performance gain of CT_PACK relative to BT_BAS reaches about 
22.3% and that of CT_EaP reaches about 29.1%. 

There is a trade-off in employing an embedded segment index in the sense that this mechanism 
certainly requires a small overhead to maintain a segment offset in leaf nodes. However, it does save up 
to 30% of the unused space. In our scheme, the size of each segment offset is 4-bytes of an unsigned 
integer. The array size of the segment offsets is 10, which is a sufficient number to keep multiple 
segments. Thus, the space overhead for maintaining an embedded segment index is less than 40-bytes. 
In the case of first test set, the average I/O size of the column data updates is about 3.7 kbytes and thus, 
the space overhead is about 1.1%. In a heavy-workload case, the average size of column data updates is 
about 7.2 kbytes and thus, the space overhead is about 0.6% at most. Therefore, the CaF index scheme 
can save about 28.9% in flash memory. 

Moreover, as shown in our results, the superior search performance of our scheme compensates for 
this overhead, especially in read-intensive high-performance databases. Additionally, the CaF index 
enhances the power consumption and the lifetime of the flash memory by reducing the volume of I/O 
data .    
5. Conclusion 

Column-oriented database systems are being increasingly adopted in the commercial marketplace 
due to their I/O efficiency on read-mostly applications such as data warehouses that serve customer 
relationship management and business intelligence applications. 

We have proposed a CaF index management scheme based on flash memory in order to enhance 
index operation performance in column-oriented database systems. Unlike the previous B+-Tree index, 
the CaF index scheme improves search operation performance by using unused space packing in 
internal and leaf nodes. The CaF index scheme also exploits the embedded segment index to shorten the 
index traverse range of column data and to reduce the uncompression overhead in leaf nodes. 

We used two types of databases from a game portal and a network company. The results obtained 
from our performance evaluation show that the CaF index management scheme outperforms the 
traditional B+-Tree index scheme in terms of mixed operation response time and mixed operation 
throughput, especially in the high workload condition. 



A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases 

 

404 | J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 

References 

[1] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented database systems,” Proceedings of the VLDB 
Endowment, vol. 2, no. 2, pp. 1664-1665, 2009. 

[2] R. MacNicol and B. French, “Sybase IQ multiplex-designed for analytics,” in Proceedings of the 30th 
International Conference on Very Large Data Bases (VLDB’04), Toronto, Canada, 2004, pp. 1227-1230. 

[3] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, et al., “C-store: a column-oriented 
DBMS,” in Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), Trondheim, 
Norway, 2005, pp. 553-564. 

[4] S. Byun, “Column-aware polarization scheme for high-speed database systems,” Journal of Korean Society 
Internet Information, vol. 13, no. 3, pp. 83-91, 2012. 

[5] Y. H. Chang, J. W. Hsieh, and T. W. Kuo, “Endurance enhancement of flash-memory storage systems: an 
efficient static wear leveling design,” in Proceedings of the 44th annual Design Automation Conference, San 
Diego, CA, 2007, pp. 212-217. 

[6] S. Byun, “Enhanced index management for accelerating hybrid storage systems,” Journal of Convergence 
Information Technology, vol. 4, no. 2, pp. 164-169, 2009.  

[7] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-stores: how different are they really?,” 
in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, 
Canada, 2008, pp. 967-980. 

[8] S. K. Cha, J. H. Park, and B. D. Park, “Xmas: an extensible main-memory storage system,” in Proceedings of the 
6th International Conference on Information and Knowledge Management, Las Vegas, NV, 1997, pp. 356-362. 

[9] R. Elmasri and S. Navathe, Fundamentals of Database System, 6th ed. Upper Saddle River, NJ: Pearson 
Education, 2010.  

[10] C. H. Wu, L. P. Chang, and T. W. Kuo, “An efficient R-tree implementation over flash-memory storage systems,” 
in Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems, New 
Orleans, LA, 2003, pp. 17-24. 

[11] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: main memory database index structure revisited,” in Proceedings 
of the 11th Australasian Database Conference (ADC2000), Canberra, Australia, 2000, pp. 65-73. 

[12] C. Lee, K. Ahn, and B. Hong, “A study of performance decision factor for moving object database in main 
memory index,” in Proceedings of the Korea Information Processing Society 2003 Spring Conference, Seoul, Korea, 
2003, pp. 1575-1578. 

[13] B-Tree, “Software design using C++,” 2009; http://cis.stvincent.edu/carlsond/swdesign/btree/btree.html. 
[14] D. Roberts, T. Kgil, and T. Mudge, “Integrating NAND flash devices onto servers,” Communications of the ACM, 

vol. 52, no. 4, pp. 98-103, 2009.  
[15] Wikipedia, “B-tree,” 2013; http://en.wikipedia.org/wiki/B-tree. 
[16] M. Oberhumer, “LZO,” 2013; http://www.oberhumer.com/opensource/lzo/. 
[17] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi, “Tree indexing on solid state drives,” Proceedings of the VLDB 

Endowment, vol. 3, no. 1-2, pp. 1195-1206, 2010. 
[18] C. H. Wu, L. P. Chang, and T. W. Kuo, “An efficient B-tree layer for flash-memory storage systems,” 

in Proceedings of 9th International Conference on Real-Time and Embedded Computing Systems and Applications 
(RTCSA2003), Tainan City, Taiwan, 2003, pp. 409-430. 

[19] Mesquite Software, “CSIM20 user's guide,” http://www.mesquite.com/documentation/documents/CSIM20_ 
User_Guide-C++.pdf. 

 
 



Si-Woo Byun and Seok-Woo Jang 
 

 

J Inf Process Syst, Vol.11, No.3, pp.389~405, September 2015 | 405 

Si-Woo Byun   
 
He received a B.S. degree in Computer Science from Yonsei University in 1989 and 
earned his M.S. and Ph.D. in Computer Science from Korea Advanced Institute of 
Science and Technology (KAIST) in 1991 and 1999. Currently, he is teaching and 
researching in the area of distributed database systems, embedded systems, mobile 
computing, flash memory database, and fault-tolerant systems in Anyang University.   
Seok-Woo Jang   http://orcid.org/0000-0001-5580-4098 
 
He received the B.S., M.S., and Ph.D. degrees in Computer Science from Soongsil 
University, Seoul, Korea, in 1995, 1997, and 2000, respectively. He is currently 
working as an Assistant Professor at Anyang University, Korea. His primary research 
interests include robot vision, fuzzy systems, augmented reality, video indexing and 
retrieval, intelligent game, biometrics and pattern recognition.  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


